a/ Áp dụng định lí Pytago vào tam giác vu6ong ABC ta được:
AB2=BC2-AC2=102-82=62
=> AB=6 cm.
b/ Xét tam giác ABI và tam giác DBI có:
BI chung
Góc IAB=IDB=90 độ
Góc IBA=IBD(phân giác IB)
=> Tam giác ABI=tam giác DBI(ch-gn)
c/ Gọi O là giao điểm AD và IB.
Vì tam giác ABI=tam giác DBI(câu b)
=> AB=BD(cạnh tương ứng)
Xét tam giác OBA và tam giác OBD có:
BO chung
Góc OBD=OBA(phân giác BI)
AB=BD(cmt)
=> Tam giác OBA=tam giác OBD(c-g-c)
=> OA=OD(cạnh tương ứng) và Góc AOB=DOB=180/2=90 độ
=> BI là đường trung trực của AD.
d/ Xét tam giác IAE và tam giác IDC có:
Góc AIE=DIC(đối đỉnh)
Góc IAE=IDC=90 độ
IA=ID(cạnh tương ứng của tam giác ABI=tam giác DBI)
=> Tam giác IAE=tam giác IDC(g-c-g)
=> AE=DC(cạnh tương ứng)
Mà AB=BD
=> BE=BC hay Tam giác BEC cân tại B
=> Góc BDA=BCE và 2 góc đó ở vị trí đồng vị nên AD//EC
Mà BI vuông góc với AD nên BI cũng vuông góc với EC.
Gọi N là giao điểm của BI và EC.