Giải thích các bước giải:
a) Áp dụng định lý Pi-ta-go vào tamgiac vuông ABC có:
AB2 = BC2 - AC2
Thay: AB2 = 102 - 62 = 100 - 36 = 64
Nên AB = 8 ( cm )
Ta có: CM là đường trung tuyến
=> AM = BM
Mà AM + BM = AB
=> 2.BM = 8 <=> BM = 4 (cm)
Vậy BM = 4 (cm)
b) Xét 2 tam giác AMC và BMD, có:
AM = BM (vì CM là trung tuyến)
CM = DM (gt)
góc AMC = góc BMD (đ.đ)
=> tamgiac AMC = tamgiac BMD ( c.g.c)
Nên AC = BD (2 cạnh tương ứng)
c) Ta có: CD = CM + DM
Mà CM = DM ( gt )
=> CD = 2.CM
Trong tamgiac BDC có:
BC + BD > CD ( bất đẳng thức tamgiac)
Hay BC + BD > 2.CM (cmt)
Mà BD = AC
=> BC + AC > 2.CM ( đpcm)
d) Thêm đề: Gọi K là điểm nằm trên đoạn thẳng AM sao cho AK = 2323 AM
Vì AK = 2323 AM
=> K là trọng tâm
Hay CM đi qua K là đường trung tuyến
=> AN = DN
Mà N ∈∈ AD
=> BN là đường trung tuyến (1)
Mặt khác: BM = AM => DM là đường trung tuyến (2)
Ngoài ra I là giao điểm BN và DM (3)
Từ (1) (2) (3)
=> I là trọng tâm tamgiac DAB
=> ID=23DMID=23DM
Hay: DM=32IDDM=32ID
Mà: CD = 2.DM
=> CD=2.32ID=3.ID