*Cách 1:
Đặt t = x + 3
=> x + 2 = t - 1; x + 4 = t + 1.
ta có pt: (t - 1)^4 + (t + 1)^4 = 82
<=>[(t -1)²]² + [(t + 1)²]² = 82
<=> (t² - 2t + 1)² + (t² + 2t + 1)² = 82
<=> (t²+1)² - 4t(t²+1) + 4t² + (t²+1)² + 4t(t²+1) + 4t² = 82
<=> (t² + 1)² + 4t² = 41
<=> t^4 + 6t² + 1 = 41
<=> (t²)² + 6t² - 40 = 0
<=> t² = -10 (loại) hoặc t² = 4
<=> t = 2 hoặc t = -2
với t = -2 => x = -5
với t = 2 => x = -1
vậy pt có hai nghiệm là : x = -1 hoặc x = -5
*Tổng quát:
(x+a)^4 + (x+b)^4 = c
đặt: t = x + (a+b)/2, sau khi chuyển qua ẩn phụ rồi khai triển chắc chắn sẽ ra pt trùng phương.
**Cách 2/ chú ý hai hằng đẳng thức:
a² + b² = (a - b)² + 2ab. và
a² + b² = (a + b)² - 2ab.
pt: (x + 2)^4 + (x + 4)^4 = 82
Đặt: t = (x + 2)(x + 4). ta có:
*(x+2)² + (x+4)² = [(x+2)-(x+4)]² + 2(x+2)(x+4) =
= (-2)² + 2t = 4 + 2t
*(x + 2)^4 + (x + 4)^4 = [(x + 2)²]² + [(x + 4)²]² =
= [(x+2)² + (x+4)²]² - 2(x+2)².(x+4)² =
= [4 + 2t]² - 2t²
= 16 + 16t + 4t² - 2t²
thay vào pt đã cho ta có:
16 + 16t + 2t² = 82
<=> t² + 8t - 33 = 0
<=> t = -11 hoặc t = 3
+Với t = -11:
(x + 2)(x + 4) = -11
<=> x² + 6x +19 = 0 => vn
+Với t = 3:
(x + 2)(x + 4) = 3
<=> x² + 6x + 5 = 0
<=> x = -1 hoặc x = -5