Bài tập  /  Bài đang cần trả lời

Cho tam giác ABC có AB = AC. Kẻ BD vuông góc AC, CE vuông góc AB (D thuộc AC, E thuộc AB). Gọi O là giao điểm của BD và CE. Chứng minh: a) BD = CE. b) Tam giác OEB = tam giác ODC. c) AO là tia phân giác của góc BAC

Cho tam giác ABC có AB = AC. Kẻ BD vuông góc AC, CE vuông góc AB (D thuộc AC, E thuộc AB). Gọi O là giao điểm của BD và Ce. Chứng minh:
a) BD = CE.
b) Tam giác OEB = tam giác ODC.
c) AO là tia phân giác của góc BAC.
2 Xem trả lời
Hỏi chi tiết
4.580
4
1
Vũ Khánh Linh
02/09/2021 14:41:34
+5đ tặng

Mở khóa để xem toàn bộ nội dung trả lời

(?)
Bạn đã đạt đến giới hạn của mình. Bằng cách Đăng ký tài khoản, bạn có thể xem toàn bộ nội dung trả lời
Cải thiện điểm số của bạn bằng cách đăng ký tài khoản Lazi.
Xem toàn bộ các câu trả lời, chat trực tiếp 1:1 với đội ngũ Gia sư Lazi bằng cách Đăng nhập tài khoản ngay bây giờ
Tôi đã có tài khoản? Đăng nhập
2
3
Nguyễn Nguyễn
02/09/2021 14:41:57
+4đ tặng
a) Xét tam giác ABD vuông tại D và tam giác ACE vuông tại E có:
          AB=AC (gt)
          A là góc chung
Do đó, ............... (ch-gn)
=> BD=CE (2 cạnh tương ứng)
b) Vì AB=AC nên tam giác ABC là tam giác cân tại A => B=C => B1 + B2 = C1 + C2
Mà B1 = C1 (vì tam giác ABD= tam giác ACE) nên B2= C2
Xét tam giác BEC vuông tại E và tam giác CDB vuông tại D có:
          BD=CE (cmt)
          B2= C2 (cmt)
Do đó,.......... (ch-gn)
=> BE=DC (2 cạnh tương ứng)
Xét tam giác OBE vuông tại E và tam giác OCD vuông tại D có:
         BE= DC (cmt)
         B1 = C1 (cmt)
Do đó tam giác OBE= tam giác OCD (cgv-gnk)
c) Ta có: AB=AC (gt) => AE+EB= AD+DC
Mà BE=DC (cmt) nên AE=AD
Xét tam giác ADO và tam giác AEO có:
          EO=OD ( vì tam giác OBE= tam giác OCD)
          AE=AD (cmt)
          AO là cạnh chung
Do đó,.................(c.c.c)
=> A1= A2 ( 2 góc tương ứng)
=> AO là tia phân giác góc A
Vậy AO là tia phân giác góc BAC.

Bạn hỏi - Lazi trả lời

Bạn muốn biết điều gì?

GỬI CÂU HỎI
Học tập không giới hạn cùng học sinh cả nước và AI, sôi động, tích cực, trải nghiệm

Hôm nay bạn thế nào? Hãy nhấp vào một lựa chọn, nếu may mắn bạn sẽ được tặng 50.000 xu từ Lazi

Vui Buồn Bình thường
×
Trợ lý ảo Trợ lý ảo
×
Đấu trường tri thức | Lazi Quiz Challenge +500k
Gửi câu hỏi
×