4. Cho ΔABC vuông ở A. TRên tia đối của tia AC lấy điểm D sao cho AD = AC.
a. Chứng minh ΔABC = ΔABD
b. Trên tia đối của tia AB, lấy điểm M. Chứng minh ΔMBD = ΔMBC.
Bằng cách nhấp vào Đăng nhập, bạn đồng ý Chính sách bảo mật và Điều khoản sử dụng của chúng tôi. Nếu đây không phải máy tính của bạn, để đảm bảo an toàn, hãy sử dụng Cửa sổ riêng tư (Tab ẩn danh) để đăng nhập (New Private Window / New Incognito Window).
a) Ta có: Tam giác ABC vuông=> góc BAC= góc BAD=90
Xét tam giác ABC và ABD có
AB: cạnh chung
góc BAC=DAB
AC=AD
=> ΔABC = ΔABD(c.g.c)
b. A là trung điểm DC=> MA là trung tuyến tam giác MDC
Mặt khác MA vuông góc DC=> Tam giác MCD cân tại M=> MC=MD
Xét ΔMBD và ΔMBC:
MB: cạnh chung
MD=MC(c/m trên)
BC=BD( ΔABC = ΔABD)
=> ΔABC = ΔABD
Hôm nay bạn thế nào? Hãy nhấp vào một lựa chọn, nếu may mắn bạn sẽ được tặng 50.000 xu từ Lazi
Vui | Buồn | Bình thường |