Bài 1. Cho đường tròn tâm \(O\) bán kính \(r\) nằm trên mặt phẳng \((P)\). Từ những điểm \(M\) thuộc đường tròn này ta kẻ những đường thẳng vuông góc với \((P)\). Chứng minh rằng những đường thẳng như vậy nằm trên một mặt trụ tròn xoay. Hãy xác định trục và bán kính của mặt trụ đó.
Hướng dẫn giải:Xét đường thẳng \(∆\) đi qua điểm \(O\) và vuông góc với mặt phẳng \((P)\). Gọi \(d\) là đưởng thẳng đi qua \(M\in (C)\) và \(d\) vuông góc với \((P)\). Do đó \(d // ∆\). Quay mặt phẳng \((Q)\) tạo bởi \(d\) và \(∆\) quanh đường thẳng \(∆\), thì đường thẳng \(d\) vạch lên một mặt trụ tròn xoay. Mặt trụ này chứa tất cả những đường thẳng đi qua các điểm \(M \in (C)\) và vuông góc với \((P)\). Trục của mặt trụ là \(∆\) và bán kính của trụ bằng \(R\).