15. Giải hệ phương trình \(\left\{\begin{matrix} x + 3y = 1 & & \\ (a^{2} + 1)x + 6y = 2a & & \end{matrix}\right.\) trong mỗi trường hợp sau:
a) \(a = -1\); b) \(a = 0\); c) \(a = 1\).
Bài giải:
a) Khi \(a = -1\), ta có hệ phương trình \(\left\{\begin{matrix} x + 3y = 1 & & \\ 2x+ 6y = -2 & & \end{matrix}\right.\) ⇔ \(\left\{\begin{matrix} x + 3y = 1 & & \\ x+ 3y = -1 & & \end{matrix}\right.\)
Hệ phương trình vô nghiệm (Do hai đường thẳng song song với nhau).
b) Khi \(a = 0\), ta có hệ \(\left\{\begin{matrix} x + 3y = 1 & & \\ x+ 6y = 0 & & \end{matrix}\right.\)
Từ phương trình thứ nhất ta có \(x = 1 - 3y\).
Thế vào \(x\) trong phương trình thứ hai, ta được:
\(1 - 3y + 6y = 0 ⇔ 3y = -1 ⇔ y = -\frac{1}{3}\)
Thay \(y = -\frac{1}{3}\) vào \(x = 1 - 3y\) ta được
\(x = 1 - 3(-\frac{1}{3}) = 2\)
Hệ phương trình có nghiệm \((x; y) = (2; -\frac{1}{3})\).
c) Khi \(a = 1\), ta có hệ \(\left\{\begin{matrix} x + 3y = 1 & & \\ 2x+ 6y = 2 & & \end{matrix}\right.\) ⇔ \(\left\{\begin{matrix} x + 3y = 1 & & \\ x+ 3y = 1& & \end{matrix}\right.\) ⇔ \(\left\{\begin{matrix} x = 1 -3y& & \\ y \in R& & \end{matrix}\right.\)
Hệ phương trình có vô số nghiệm.