Bài tập  /  Bài đang cần trả lời

Bài 5 trang 121 SGK Giải tích 12

1 Xem trả lời
Hỏi chi tiết
469
0
0
Nguyễn Thị Thương
12/12/2017 00:49:26
Bài 5. Cho tam giác vuông \(OPM\) có cạnh \(OP\) nằm trên trục \(Ox\). Đặt  \(\widehat {POM} = \alpha \)
và \(OM = R\), \(\left( {0 \le \alpha  \le {\pi  \over 3},R > 0} \right)\)
Gọi   là khối tròn xoay thu được khi quay tam giác đó xung quanh \(Ox\) (H.63).
a) Tính thể tích của  theo \(α\) và \(R\).      
b) Tìm \(α\) sao cho thể tích  là lớn nhất.  
  
Hướng dẫn giải :
a) Hoành độ điểm \(P\) là : 
\(x_p=  OP = OM. cos α = R.cosα\)
Phương trình đường thẳng \(OM\) là \(y =  tanα.x\). Thể tích \(V\) của khối tròn xoay là:
\(V = \pi \int\limits_0^{R\cos \alpha } {{{\tan }^2}\alpha {{{x^3}} \over 3}\left| {_0^{R\cos \alpha } = {{\pi .{R^3}} \over 3}(\cos \alpha  - {{\cos }^3}} \right.} \alpha )\)
b) Đặt \(t = cosα \Rightarrow t ∈ \left[ \right]} \right)\),  \(α = arccos t\).
Ta có :
\(\eqalign{
& V = {{\pi {R^3}} \over 3}(t - {t^3});V' = {{\pi {R^3}} \over 3}(1 - 3{t^2}) \cr
& V' = 0 \Leftrightarrow \left[ \matrix{
t = {{\sqrt 3 } \over 3} \hfill \cr
t = {{ - \sqrt 3 } \over 3}\text{ (loại)} \hfill \cr} \right. \cr} \)
 Từ đó suy ra \(V\) lớn nhất bằng \({{2\sqrt 3 \pi R^3} \over 27}\) \(\Leftrightarrow t = {{\sqrt 3 } \over 3} \Leftrightarrow \alpha  = \arccos {{\sqrt 3 } \over 3}\)

Mở khóa để xem toàn bộ nội dung trả lời

(?)
Bạn đã đạt đến giới hạn của mình. Bằng cách Đăng ký tài khoản, bạn có thể xem toàn bộ nội dung trả lời
Cải thiện điểm số của bạn bằng cách đăng ký tài khoản Lazi.
Xem toàn bộ các câu trả lời, chat trực tiếp 1:1 với đội ngũ Gia sư Lazi bằng cách Đăng nhập tài khoản ngay bây giờ
Tôi đã có tài khoản? Đăng nhập

Bạn hỏi - Lazi trả lời

Bạn muốn biết điều gì?

GỬI CÂU HỎI
Học tập không giới hạn cùng học sinh cả nước và AI, sôi động, tích cực, trải nghiệm

Hôm nay bạn thế nào? Hãy nhấp vào một lựa chọn, nếu may mắn bạn sẽ được tặng 50.000 xu từ Lazi

Vui Buồn Bình thường
×
Trợ lý ảo Trợ lý ảo
×
Đấu trường tri thức | Lazi Quiz Challenge +500k
Gửi câu hỏi
×