Bài tập  /  Bài đang cần trả lời

Bài 5 trang 49 sách giáo khoa hình học lớp 12

1 Xem trả lời
Hỏi chi tiết
367
0
0
Tôi yêu Việt Nam
12/12/2017 00:35:42
Bài 5. Từ một điểm \(M\) nằm nằm bên ngoài mặt cầu \(S( O; r)\) ta kẻ hai đường thẳng cắt mặt cầu lần lượt tại \(A, B\) và \(C, D\).
a) Chứng minh rằng \(MA.MB = MC.MD\).
b) Gọi \(MO = d\). Tính \(MA.MB\) theo \(r\) và \(d\).
Giải:

a) Gọi \((P)\) là mặt phẳng chứa hai đường thẳng đã cho. Mặt phẳng\((P)\) cắt mặt cầu \(S(O;r)\) theo một đường tròn tâm \(I\), là hình chiếu vuông góc của \(O\) lên mặt phẳng \((P)\).
Xét hai tam giác \(MAD\) và \(MCB\) có:
+) \(\widehat B = \widehat D\) (Hai góc cùng chắn một cung)
+) \(\widehat M\)
\( \Rightarrow \Delta MAD\) đồng dạng \(\Delta MCB\).
\(\Rightarrow{{MA} \over {MC}} = {{MD} \over {MB}}\Rightarrow MA.MB=MC.MD\)
b) Đặt \(MO = d\), ta có \(OI\) vuông góc với \((P)\) và ta có:
\(O{M^2} = M{I^2} = O{I^2};O{A^2} = O{I^2} + I{A^2}\)
Hạ \(IH\) vuông góc \(AB\), ta có \(H\) là trung điểm của \(AB\).
Ta có \(MA = MH - HA\); \(MB = MH + HB = MH + HA\).
\(MA.MB = M{H^2} - H{A^2}\)
                 \(\eqalign{
& = (M{H^2} + H{I^2}) - (H{A^2} + I{H^2}) \cr
& = M{I^2} - I{A^2} \cr
& = (M{I^2} + O{I^2}) - (I{A^2} + O{I^2}) \cr
& = O{M^2} - O{A^2} \cr
& = {d^2} - {r^2} \cr} \)
Vậy \(MA.MB = {d^2} - {r^2}\).

 


Mở khóa để xem toàn bộ nội dung trả lời

(?)
Bạn đã đạt đến giới hạn của mình. Bằng cách Đăng ký tài khoản, bạn có thể xem toàn bộ nội dung trả lời
Cải thiện điểm số của bạn bằng cách đăng ký tài khoản Lazi.
Xem toàn bộ các câu trả lời, chat trực tiếp 1:1 với đội ngũ Gia sư Lazi bằng cách Đăng nhập tài khoản ngay bây giờ
Tôi đã có tài khoản? Đăng nhập

Bạn hỏi - Lazi trả lời

Bạn muốn biết điều gì?

GỬI CÂU HỎI
Học tập không giới hạn cùng học sinh cả nước và AI, sôi động, tích cực, trải nghiệm

Hôm nay bạn thế nào? Hãy nhấp vào một lựa chọn, nếu may mắn bạn sẽ được tặng 50.000 xu từ Lazi

Vui Buồn Bình thường
×
Trợ lý ảo Trợ lý ảo
×
Đấu trường tri thức | Lazi Quiz Challenge +500k
Gửi câu hỏi
×