Bài 5. Cho tứ diện \(ABCD\) có cạnh \(AD\) vuông góc với mặt phẳng \((ABC)\). Biết rằng \(AC = AD = 4 cm\), \(AB = 3 cm, BC = 5 cm\).
a) Tính thể tích tứ diện \(ABCD\).
b) Tính khoảng cách từ điểm \(A\) tới mặt phẳng \((BCD)\).
Giải![](./uploads/data_img/bai-5-trang-99-sgk-hinh-hoc-12.png)
Chọn hệ toạ độ gốc là điểm \(A\), các đường thẳng \(AB, AC, AD\) theo thứ tự là các trục \(Ox, Oy, Oz\).
Ta có: \(A(0; 0; 0), B(3; 0; 0)\)
\(C(0; 4; 0), D(0; 0; 4)\)
Ta có: \(\overrightarrow {AB} = (3; 0; 0) \Rightarrow AB = 3\)
\(\overrightarrow {AC} = (0; 4; 0) \Rightarrow AC = 4\)
\(\overrightarrow {AD} = (0; 0; 4) \Rightarrow AD = 4\)
\(V_{ABCD}\) = \({1 \over 6}AB.AC.AD = 8 (cm^3)\)
b) Áp dụng công thức phương trình mặt phẳng theo đoạn chắn, ta có phương trình mặt phẳng \((BDC)\) là:
\({x \over 3} + {y \over 4} + {z \over 4} = 1 \Leftrightarrow 4x + 3y + 3z - 12 = 0\)
Từ đây ta có: \(d(A, (BDC)) ={{\left| {12} \right|} \over {\sqrt {{3^2} + {4^2} + {4^2}} }} = {{12} \over {\sqrt {34} }}\)