Bằng cách nhấp vào Đăng nhập, bạn đồng ý Chính sách bảo mật và Điều khoản sử dụng của chúng tôi. Nếu đây không phải máy tính của bạn, để đảm bảo an toàn, hãy sử dụng Cửa sổ riêng tư (Tab ẩn danh) để đăng nhập (New Private Window / New Incognito Window).
Bài 61 trang 87 SBT Toán 8 Tập 1: Cho tam giác nhọn ABC có ∠A = 60o, trực tâm H. Gọi M là điểm đối xứng với H qua BC.
a. Chứng minh ΔBHC = ΔBMC
b. Tính góc (BMC)
Lời giải:
a. Vì M đối xứng với H qua trục BC
⇒ BC là đường trung trực của HM
⇒ BH = BM (t/chất đường trung trực)
CH = CM (t/chất đường trung trực)
Suy ra: ΔBHC = ΔBMC (c.c.c)
b. Gọi giao điểm BH với AC là D, giao điểm của CH và AB là E, H là trực tâm của ΔABC
⇒ BD ⊥ AC, CE ⊥ AB
Xét tứ giác ADHE, ta có:
∠(DHE) = 360o – (∠A + ∠D + ∠E ) = 360o – ( 60o + 90o + 90o) = 120o
∠(BHC) = ∠(DHE)(đối đỉnh)
ΔBHC = ΔBMC (chứng minh trên)
⇒ ∠(BMC) = ∠(BHC)
Suy ra: ∠(BMC) = ∠(DHE) = 120o
Tham gia Cộng đồng Lazi trên các mạng xã hội | |
Fanpage: | https://www.fb.com/lazi.vn |
Group: | https://www.fb.com/groups/lazi.vn |
Kênh FB: | https://m.me/j/AbY8WMG2VhCvgIcB |
LaziGo: | https://go.lazi.vn/join/lazigo |
Discord: | https://discord.gg/4vkBe6wJuU |
Youtube: | https://www.youtube.com/@lazi-vn |
Tiktok: | https://www.tiktok.com/@lazi.vn |
Hôm nay bạn thế nào? Hãy nhấp vào một lựa chọn, nếu may mắn bạn sẽ được tặng 50.000 xu từ Lazi
Vui | Buồn | Bình thường |