Bài 1: a,Xét ΔHAEΔHAE và ΔFCGΔFCG
Có : HAEˆ=FCGˆHAE^=FCG^ ( 2 góc đối của hình bình hành )
AE = GC ( theo gt )
AH = FC ( Vì AD = BC mà AE = GC ,theo gt )
=> ΔHAEΔHAE = ΔFCGΔFCG ( c.g.c )
=> HE = GF ( 2 cạnh tương ứng ) [1]
Xét ΔHDGΔHDG và ΔFBEΔFBE
Có : HDGˆ=FBEˆHDG^=FBE^ ( 2 góc đối của hình bình hành )
HD = BF
DG = BE ( Vì AB = DC mà HD = BF ,theo gt )
=> ΔHDGΔHDG = ΔFBEΔFBE ( c.g.c )
=> HG = EF ( 2 cạnh tương ứng ) [2]
Từ [1] và [2] => EFGH là hình bình hành ( vì có các cạnh đối bằng nhau )
b, Có ABCD là hình bình hành => AC cắt BD ở trung điểm mỗi đường [3]
Lại có EFGH cũng là hình bình hành => EG cắt HF tại trung điểm mỗi đường[4]
Mà HBFD là hình bình hành ( vì HD // BF và HD = BF , theo gt )
=> HF cắt BD tại trung điểm mỗi đường [5]
Từ [3] ; [4] và [5] => AC,BD,EG,FH đồng quy tại một điểm.