Bài tập  /  Bài đang cần trả lời

Cho tam giác ABC cân tại A. M là trung điểm BC, kẻ ME vuông góc với AB tại E, MI vuông góc với AC tại I. a) Chứng minh AE = AI. b) Chứng minh AM là trung trực của đoạn thẳng EI. c) Chứng minh EI // BC. d) Giả sử AB = 15 cm, BC = 18 cm. Tính độ dài AM và ME

Định lý Py-ta-go
1 Xem trả lời
Hỏi chi tiết
2.538
2
2
.......
24/01/2017 21:44:59
a, vì tam giác ABC cân tại A => góc B = góc C ( 2  góc ở đáy bằng nhau )
-tam giác ABM và tam giác ACM có :
AB=AC(gt)                  |
góc B= góc C ( cmt )   | => tam giác ABM=tam giác ACM(c-g-c)
BM=CM (gt)                |
=> góc A1 = góc A2 ( 2 góc t/ứ )
-tam giác AEM và tam giác AIM có
góc AEM=góc AIM(=90 độ)   |
cạnh AM chung                    |=> tam giác AEM= tam giác  AIM ( ch-gn)
góc A1= góc A2(cmt )           |
=> AE=AI(2 cạnh t/ứ)
b, vì tam giác AEI cân tại A => tia phân giác góc A vuông góc với EI 
đặt AM cắt EI tại O
tam giác AEO và tam giác AIO có
góc AOE = góc AOI (=90 độ)   |
AE=AI(cmt)                            | => tam giác AEO và tam giác AIO ( ch-cgv)
AO chung                               |
=> EO = IO ( 2 cạnh t/ứ )
vì AO vuông góc EI và EO = IO =>AO là đg trug trực của EI
mà AM là nối dài của AO => AM là đg trug trực của EI
c, vì tam giác AEI cân tại A => góc AEI = ( 180 độ - góc A ): 2    (1)
   vì tam giác ABC cân tại A  => góc ABC = ( 180 độ - góc A ) : 2   (2)
từ (1) và (2) => góc AEI = góc ABC mà 2 góc này ở vị trí đồng vị => EI // BC
d, vì BM=CM ( gt )   => BM = CM = 18: 2 = 9 (cm)
-AM^2 = AE^2 + BM^2
=>AM^2 = 15^2 - 9^2
=>AM^2 = 144
=>AM   = 12 (cm)

Mở khóa để xem toàn bộ nội dung trả lời

(?)
Bạn đã đạt đến giới hạn của mình. Bằng cách Đăng ký tài khoản, bạn có thể xem toàn bộ nội dung trả lời
Cải thiện điểm số của bạn bằng cách đăng ký tài khoản Lazi.
Xem toàn bộ các câu trả lời, chat trực tiếp 1:1 với đội ngũ Gia sư Lazi bằng cách Đăng nhập tài khoản ngay bây giờ
Tôi đã có tài khoản? Đăng nhập

Bạn hỏi - Lazi trả lời

Bạn muốn biết điều gì?

GỬI CÂU HỎI
Học tập không giới hạn cùng học sinh cả nước và AI, sôi động, tích cực, trải nghiệm

Hôm nay bạn thế nào? Hãy nhấp vào một lựa chọn, nếu may mắn bạn sẽ được tặng 50.000 xu từ Lazi

Vui Buồn Bình thường
×
Trợ lý ảo Trợ lý ảo
×
Đấu trường tri thức | Lazi Quiz Challenge +500k
Gửi câu hỏi
×