Bài tập  /  Bài đang cần trả lời

Cho tam giác ABC, có AB < AC. Kẻ tia phân giác AD của góc BAC (D thuộc BC). Trên cạnh AC lấy điểm E sao cho AE = AB, trên tia AB lấy điểm F sao cho AF = AC

Cho tam giác ABC có AB < AC. Kẻ tia phân giác AD của góc BAC (D thuộc BC). Trên cạnh AC lấy điểm E sao cho AE = AB, trên tia AB lấy điểm F sao cho AF = AC. Chứng minh: a) Tam giác BDF = tam giác EDC. b) BF = EC. c) F, D, E thẳng hàng. d) AD vuông góc với FC. cho mình hỏi viết giả thiết kết luận như thế nào?
5 Xem trả lời
Hỏi chi tiết
9.122
11
4
Ngoc Hai
23/11/2017 20:08:23
Cho tam giác ABC có AB < AC. Kẻ tia phân giác AD của góc BAC (D thuộc BC). Trên cạnh AC lấy điểm E sao cho AE = AB, trên tia AB lấy điểm F sao cho AF = AC. Chứng minh: a) Tam giác BDF = tam giác EDC. b) BF = EC. c) F, D, E thẳng hàng. d) AD vuông góc với FC. cho mình hỏi viết giả thiết kết luận như thế nào?
=>
GT:
Δ ABC(AB<AC)
AD la tia phan giac goc BAC(D ∈ BC)
AE = AB( E ∈ AC)
AF = AC ( F ∈ AB)
KL:
a, Δ BDF = Δ EDC
B, BF = EC
c, F,D,E thang hang
d, AD ⊥ FC

Mở khóa để xem toàn bộ nội dung trả lời

(?)
Bạn đã đạt đến giới hạn của mình. Bằng cách Đăng ký tài khoản, bạn có thể xem toàn bộ nội dung trả lời
Cải thiện điểm số của bạn bằng cách đăng ký tài khoản Lazi.
Xem toàn bộ các câu trả lời, chat trực tiếp 1:1 với đội ngũ Gia sư Lazi bằng cách Đăng nhập tài khoản ngay bây giờ
Tôi đã có tài khoản? Đăng nhập
35
37
Nguyễn Thị Thu Trang
23/11/2017 20:09:04
6
5
Ngoc Hai
23/11/2017 20:09:32
Viet gia thiet ket luan ban nha :D
11
4
4
9
Nguyễn Thị Thu Trang
23/11/2017 20:11:40
Cho tam giác ABC có AB < AC. Kẻ tia phân giác AD của góc BAC (D thuộc BC). Trên cạnh AC lấy điểm E sao cho AE = AB, trên tia AB lấy điểm F sao cho AF = AC. Chứng minh: a) Tam giác BDF = tam giác EDC. b) BF = EC. c) F, D, E thẳng hàng. d) AD vuông góc với FC
=====
GT
tam giác abc
ab<ac
tia phân giác AD của góc BAC
D thuộc BC
AE = AB
AF=AC
KL
a , a) Tam giác BDF = tam giác EDC.
b) BF = EC. c) F, D, E thẳng hàng.
d) AD vuông góc với FC

Bạn hỏi - Lazi trả lời

Bạn muốn biết điều gì?

GỬI CÂU HỎI
Học tập không giới hạn cùng học sinh cả nước và AI, sôi động, tích cực, trải nghiệm

Hôm nay bạn thế nào? Hãy nhấp vào một lựa chọn, nếu may mắn bạn sẽ được tặng 50.000 xu từ Lazi

Vui Buồn Bình thường
×
Trợ lý ảo Trợ lý ảo
×
Đấu trường tri thức | Lazi Quiz Challenge +500k
Gửi câu hỏi
×