Kẻ AH là đường phân giác của góc BAC, đường thẳng kẻ qua I vuông góc với MN cắt đường thẳng AH tại K. Chứng minh góc MBK = góc NCK
Cho △ABC cân tại A.Trên cạnh BC lấy điểm D,trên tia đối của tia CB lấy điểm E sao cho BD=CE. Đường thẳng vuông góc với BC tại D cắt AB tại M, đường thẳng vuông góc với BC tại E cắt đường thẳng AC tại N.
a)CMR :△MDB=△NEC
b)Gọi I là giao điểm của MN và BC.CMR: I là trung điểm của MN
c)Kẻ AH là đường phân giác của góc BAC ; đường thẳng kẻ qua I vuông góc với MN cắt đường thẳng AH tại K. Chứng minh góc MBK= góc NCK
d)CMR: KC⊥AC
Cho △DEF vuông tại D,kẻ đường phân giác EI của góc E ( I thuộc DF).Đường thẳng đi qua D và vuông góc với EI cắt EF tại M.
a)Chứng minh: ED=EM
b)Chứng minh: △EMI là tam giác vuông
c)So sánh độ dài hai đoạn thẳng DI và IF
d)Vẽ tia Fx song song với DM,Fx cắt EI tại K. Chứng minh rằng 3 đường thẳng DE,FK,IM đồng quy.