Cho hàm số \(f(x)\) liên tục trên \(\mathbb{R}\) thỏa mãn \(f(x) = \left\{ \begin{array}{l} - 3{x^2} + 6x + m{\rm{ khi }}x < 1\\\frac{\rm{ khi }}x \ge 1\end{array} \right.\) (Với\(m\) là hằng số). Biết \(I = \int\limits_{\frac{1}{e}}^{{e^2}} {\frac{{f\left( {\ln x} \right)}}{x}{\rm{d}}x} + \int\limits_0^{\ln 2} {{e^x}f\left( {{e^x}} \right){\rm{d}}x} = a + b\ln 4 + c\ln 3\) với \(a,\,\,b,\,c\) là các số nguyên. Tổng \(a + 2b + 3c\) bằng

Tôi yêu Việt Nam | Chat Online
06/09 06:46:31 (Toán học - Lớp 12)
8 lượt xem

Cho hàm số \(f(x)\) liên tục trên \(\mathbb{R}\) thỏa mãn \(f(x) = \left\{ \begin{array}{l} - 3{x^2} + 6x + m{\rm{ khi }}x < 1\\\frac{\rm{ khi }}x \ge 1\end{array} \right.\) (Với\(m\) là hằng số). Biết \(I = \int\limits_{\frac{1}{e}}^{{e^2}} {\frac{{f\left( {\ln x} \right)}}{x}{\rm{d}}x} + \int\limits_0^{\ln 2} {{e^x}f\left( {{e^x}} \right){\rm{d}}x} = a + b\ln 4 + c\ln 3\) với \(a,\,\,b,\,c\) là các số nguyên. Tổng \(a + 2b + 3c\) bằng

Vui lòng chờ trong giây lát!
Lựa chọn một trả lời để xem Đáp án chính xác Báo sai đáp án hoặc câu hỏi
Số lượng đã trả lời:
A. \(32.\)
0 %
0 phiếu
B. \(4.\)
0 %
0 phiếu
C. \(28.\)
0 %
0 phiếu
D. \[16.\]
0 %
0 phiếu
Tổng cộng:
0 trả lời
Bình luận (0)
Chưa có bình luận nào, bạn có thể gửi ý kiến bình luận tại đây:
Gửi bình luận của bạn tại đây (*):
(Thông tin Email/ĐT sẽ không hiển thị phía người dùng)
*Nhấp vào đây để nhận mã Nhấp vào đây để nhận mã

Trắc nghiệm liên quan

×
Trợ lý ảo Trợ lý ảo
×
Gia sư Lazi Gia sư