Cho hàm số \[y = {x^3} + 6{x^2} + 3\left( {m + 2} \right)x - m - 6\] với mm là tham số thực. Tìm tất cả các giá trị của m để hàm số có hai điểm cực trị \[{x_1},{x_2}\] thỏa mãn \[{x_1} < - 1 < {x_2}\]
Tôi yêu Việt Nam | Chat Online | |
05/09/2024 11:59:38 (Tổng hợp - Lớp 12) |
9 lượt xem
Cho hàm số \[y = {x^3} + 6{x^2} + 3\left( {m + 2} \right)x - m - 6\] với mm là tham số thực. Tìm tất cả các giá trị của m để hàm số có hai điểm cực trị \[{x_1},{x_2}\] thỏa mãn \[{x_1} < - 1 < {x_2}\]
Vui lòng chờ trong giây lát!
Lựa chọn một trả lời để xem Đáp án chính xác Báo sai đáp án hoặc câu hỏi |
Số lượng đã trả lời:
A. m>1 0 % | 0 phiếu |
B. m<1 0 % | 0 phiếu |
C. m>−1 0 % | 0 phiếu |
D. m<−1 0 % | 0 phiếu |
Tổng cộng: | 0 trả lời |
Bình luận (0)
Chưa có bình luận nào, bạn có thể gửi ý kiến bình luận tại đây:
Trắc nghiệm liên quan
- Cho hàm số y=f(x) liên tục trên R và có đồ thị như hình vẽ bên, một hàm số g(x) xác định theo f(x) có đạo hàm \[g\prime (x) = f(x) + m\]. Tìm tất cả các giá trị thực của tham số mm để hàm số g(x) có duy nhất một cực trị. (Tổng hợp - Lớp 12)
- Cho hàm số \[y = 2{x^3} - 3\left( {m + 1} \right){x^2} + 6mx.\]. Tìm mm để đồ thị hàm số có hai điểm cực trị là A,B sao cho đường thẳng AB vuông góc với \[d:x - y - 9 = 0\] (Tổng hợp - Lớp 12)
- Hãy lập phương trình đường thẳng (d) đi qua các điểm cực đại và cực tiểu của đồ thị hàm số \[y = {x^3} + 3m{x^2} - 3x\] (Tổng hợp - Lớp 12)
- Cho hàm số \[y = {x^4} - 2m{x^2} + {m^2} + m.\]. Tất cả các giá trị của m để đồ thị hàm số có 3 điểm cực trị tạo thành tam giác có một góc 120o là: (Tổng hợp - Lớp 12)
- Cho hàm số \[y = {x^4} + 2\left( {1 - {m^2}} \right){x^2} + m + 1.\]. Tất cả các giá trị của mm để đồ thị hàm số có 3 điểm cực trị tạo thành tam giác có diện tích bằng \(4\sqrt 2 \)là (Tổng hợp - Lớp 12)
- Cho hàm số \[y = {x^4} - 2m{x^2} + 3m + 2.\]. Tất cả các giá trị của m để đồ thị hàm số có 3 điểm cực trị tạo thành tam giác đều là: (Tổng hợp - Lớp 12)
- Tìm m để (Cm) : \[y = {x^4} - 2m{x^2} + 2\;\] có 3 điểm cực trị là 3 đỉnh của một tam giác vuông cân. (Tổng hợp - Lớp 12)
- Cho hàm số \[y = {x^3} - 3{x^2} + 3mx + 1.\]. Tìm m để hàm số có 2 điểm cực trị nhỏ hơn 2 (Tổng hợp - Lớp 12)
- Cho hàm số \[y = \frac{1}{3}{x^3} - m{x^2} + (2m - 4)x - 3.\]. Tìm mm để hàm số có các điểm cực đại, cực tiểu \[{x_1};{x_2}\;\] thỏa mãn: \[x_1^2 + x_2^2 = {x_1}.{x_2} + 10\] (Tổng hợp - Lớp 12)
- Đồ thị hàm số \[y = {x^3} - \left( {3m + 1} \right){x^2} + \left( {{m^2} + 3m + 2} \right)x + 3\] có điểm cực tiểu và điểm cực đại nằm về hai phía của trục tung khi: (Tổng hợp - Lớp 12)
Trắc nghiệm mới nhất
- Câu nào dưới đây không đúng với doanh nghiệp độc quyền: (Tổng hợp - Đại học)
- Đối với người tiêu dùng thì biện pháp điều tiết độc quyền nào của chính phủ mang lại lợi ích cho họ: (Tổng hợp - Đại học)
- So với giá cả và sản lượng cạnh tranh, nhà độc quyền sẽ định mức giá …… và bán ra số lượng ..... (Tổng hợp - Đại học)
- Một doanh nghiệp độc quyền thấy rằng ở mức sản lượng hiện tại, doanh thu biên bằng 5 và chi phí biến bằng 4. Quyết định nào sau đây sẽ làm tối đa hóa lợi nhuận (Tổng hợp - Đại học)
- Giả sử một công ty độc quyền có MR = 2.400 - 4Q và MC = 22, doanh thu sẽ đạt tối đa khi sản xuất sản lượng: (Tổng hợp - Đại học)
- Trong ngành độc quyền hoàn toàn, doanh thu biện (MR): (Tổng hợp - Đại học)
- Yếu tố nào sau đây được xem là rào cản của việc gia nhập thị trường: (Tổng hợp - Đại học)
- Phân biệt giá cấp một: (Tổng hợp - Đại học)
- Nếu phân biệt giá cấp một: (Tổng hợp - Đại học)
- Đường cầu sản phẩm của một ngành: Q= 1.800 - 200P Ngành này có LẠC không đổi ở mọi mức sản lượng là 1,5. Giá cả và sản lượng thế nào? Nếu phân biệt giá cấp một: (Tổng hợp - Đại học)