Số nghiệm nguyên của bất phương trình \(\left( {4 \cdot {3^x} + {2^x} - {6^x} - 4} \right)\left[ {\log \left( {x + 2} \right) - 2} \right] \ge 0\) là

Nguyễn Thu Hiền | Chat Online
05/09/2024 12:01:00 (Tổng hợp - Lớp 12)
7 lượt xem

Số nghiệm nguyên của bất phương trình \(\left( {4 \cdot {3^x} + {2^x} - {6^x} - 4} \right)\left[ {\log \left( {x + 2} \right) - 2} \right] \ge 0\) là

Vui lòng chờ trong giây lát!
Lựa chọn một trả lời để xem Đáp án chính xác Báo sai đáp án hoặc câu hỏi
Số lượng đã trả lời:
A. 97
0 %
0 phiếu
B. 99
0 %
0 phiếu
C. 100
0 %
0 phiếu
D. 2
0 %
0 phiếu
Tổng cộng:
0 trả lời
Bình luận (0)
Chưa có bình luận nào, bạn có thể gửi ý kiến bình luận tại đây:
Gửi bình luận của bạn tại đây (*):
(Thông tin Email/ĐT sẽ không hiển thị phía người dùng)
*Nhấp vào đây để nhận mã Nhấp vào đây để nhận mã

Trắc nghiệm liên quan

Giải bài tập Flashcard Trò chơi Đố vui Khảo sát Trắc nghiệm Hình/chữ Quà tặng Hỏi đáp Giải bài tập

×
Trợ lý ảo Trợ lý ảo
×
Đấu trường tri thức | Lazi Quiz Challenge +500k
Gửi câu hỏi
×