Cho hình chóp S.ABCD có các mặt phẳng \[\left( {SAB} \right),\left( {SAD} \right)\] cùng vuông góc với mặt phẳng \[\left( {ABCD} \right)\], đáy là hình thang vuông tại các đỉnh A và B, có \[AD = 2AB = 2BC = 2a\], \[SA = AC\]. Khoảng cách giữa hai đường thẳng SB và CD bằng:
Phạm Minh Trí | Chat Online | |
05/09/2024 12:02:10 (Toán học - Lớp 12) |
9 lượt xem
Cho hình chóp S.ABCD có các mặt phẳng \[\left( {SAB} \right),\left( {SAD} \right)\] cùng vuông góc với mặt phẳng \[\left( {ABCD} \right)\], đáy là hình thang vuông tại các đỉnh A và B, có \[AD = 2AB = 2BC = 2a\], \[SA = AC\]. Khoảng cách giữa hai đường thẳng SB và CD bằng:
Vui lòng chờ trong giây lát!
Lựa chọn một trả lời để xem Đáp án chính xác Báo sai đáp án hoặc câu hỏi |
Số lượng đã trả lời:
A. \[\frac{{a\sqrt 3 }}{2}\] 0 % | 0 phiếu |
B. \[\frac{{a\sqrt {15} }}{5}\] 0 % | 0 phiếu |
C. \[\frac{{a\sqrt 3 }}{4}\] 0 % | 0 phiếu |
D. \[\frac{{a\sqrt {10} }}{5}\] 0 % | 0 phiếu |
Tổng cộng: | 0 trả lời |
Bình luận (0)
Chưa có bình luận nào, bạn có thể gửi ý kiến bình luận tại đây:
Trắc nghiệm liên quan
- Cho hình chóp S.ABCD có SA vuông góc với đáy, \[SA = a\sqrt 6 .\] Đáy ABCD là hình thang vuông tại A và \[B,{\mkern 1mu} {\mkern 1mu} AB = BC = \frac{1}{2}AD = a.\] Gọi E là trung điểm AD. Tính bán kính mặt cầu ngoại tiếp hình chóp \[S.ECD\]. (Toán học - Lớp 12)
- Từ một hộp chứa 12 quả cầu, trong đó có 8 quả màu đỏ, 3 quả màu xanh và 1 quả màu vàng, lấy quả màu vàng, lấy ngẫu nhiên 3 quả. Xác suất để lấy được 3 quả cầu có đúng hai màu bằng: (Toán học - Lớp 12)
- Cho hàm số \[y = f\left( x \right)\] có bảng biến thiên như sau Bất phương trình \[\left( {{x^2} + 1} \right)f\left( x \right) \ge m\] có nghiệm trên khoảng \[\left( { - 1;2} \right)\] khi và chỉ khi (Toán học - Lớp 12)
- Có bao nhiêu giá trị nguyên của m để bất phương trình \[{\log _2}\left( {7{x^2} + 7} \right) \ge {\log _2}\left( {m{x^2} + 4x + m} \right)\] nghiệm đúng với mọi x. (Toán học - Lớp 12)
- Tính nguyên hàm \[I = \int {\frac{{{x^2} - 1}}{\rm{d}}x} \] (Toán học - Lớp 12)
- Cho hàm số \[f\left( x \right),\] có bảng xét dấu \[f'\left( x \right)\] như sau Hàm số \[y = f\left( {{x^2} - 2x} \right)\] đồng biến trên khoảng nào dưới dây (Toán học - Lớp 12)
- Trong không gian với hệ tọa độ Oxyz cho tam giác ABC biết \[A(2;1;0),B(3;0;2),C(4;3; - 4)\]. Viết phương trình đường phân giác trong góc A. (Toán học - Lớp 12)
- Cho hàm số \[y = f\left( x \right)\] là hàm số liên tục trên và \[\int\limits_0^1 {f\left( x \right){\mkern 1mu} {\rm{d}}x} = 1,\int\limits_1^4 {\frac{{f\left( {\sqrt x } \right)}}{{\sqrt x }}{\rm{d}}x} = 6\]. Tính giá trị của tích phân \[I = ... (Toán học - Lớp 12)
- Cho số phức \[z = a + bi\] với \[a,b \in \mathbb{R}\] thỏa mãn \[\left( {1 + 3i} \right)z + \left( {2 + i} \right)\bar z = - 2 + 4i.\] Tính \[P = ab.\] (Toán học - Lớp 12)
- Cho hàm số \[f\left( x \right)\] có đạo hàm là \[f'\left( x \right) = x{\left( {x + 1} \right)^2}{\left( {x - 2} \right)^4}\] với mọi \[x \in \mathbb{R}\]. Số điểm cực trị của hàm số f là: (Toán học - Lớp 12)
Trắc nghiệm mới nhất
- Câu nào dưới đây không đúng với doanh nghiệp độc quyền: (Tổng hợp - Đại học)
- Đối với người tiêu dùng thì biện pháp điều tiết độc quyền nào của chính phủ mang lại lợi ích cho họ: (Tổng hợp - Đại học)
- So với giá cả và sản lượng cạnh tranh, nhà độc quyền sẽ định mức giá …… và bán ra số lượng ..... (Tổng hợp - Đại học)
- Một doanh nghiệp độc quyền thấy rằng ở mức sản lượng hiện tại, doanh thu biên bằng 5 và chi phí biến bằng 4. Quyết định nào sau đây sẽ làm tối đa hóa lợi nhuận (Tổng hợp - Đại học)
- Giả sử một công ty độc quyền có MR = 2.400 - 4Q và MC = 22, doanh thu sẽ đạt tối đa khi sản xuất sản lượng: (Tổng hợp - Đại học)
- Trong ngành độc quyền hoàn toàn, doanh thu biện (MR): (Tổng hợp - Đại học)
- Yếu tố nào sau đây được xem là rào cản của việc gia nhập thị trường: (Tổng hợp - Đại học)
- Phân biệt giá cấp một: (Tổng hợp - Đại học)
- Nếu phân biệt giá cấp một: (Tổng hợp - Đại học)
- Đường cầu sản phẩm của một ngành: Q= 1.800 - 200P Ngành này có LẠC không đổi ở mọi mức sản lượng là 1,5. Giá cả và sản lượng thế nào? Nếu phân biệt giá cấp một: (Tổng hợp - Đại học)