Khoảng cách từ điểm M(2;0;1) đến đường thẳng \[\Delta :\frac{1} = \frac{y}{2} = \frac{1}\;\] là:
Phạm Văn Phú | Chat Online | |
05/09 12:57:43 (Tổng hợp - Lớp 12) |
2 lượt xem
Khoảng cách từ điểm M(2;0;1) đến đường thẳng \[\Delta :\frac{1} = \frac{y}{2} = \frac{1}\;\] là:
Vui lòng chờ trong giây lát!
Lựa chọn một trả lời để xem Đáp án chính xác Báo sai đáp án hoặc câu hỏi |
Số lượng đã trả lời:
A. \(\sqrt 2 \) 0 % | 0 phiếu |
B. \(\sqrt 3 \) 0 % | 0 phiếu |
C. \[2\sqrt 3 \] 0 % | 0 phiếu |
D. \[\frac{5}{{\sqrt {17} }}\] 0 % | 0 phiếu |
Tổng cộng: | 0 trả lời |
Bình luận (0)
Chưa có bình luận nào, bạn có thể gửi ý kiến bình luận tại đây:
Trắc nghiệm liên quan
- Công thức tính khoảng cách từ điểm A đến đường thẳng d′ đi qua điểm M′ và có VTCP \(\overrightarrow {u'} \)là: (Tổng hợp - Lớp 12)
- Trong không gian với hệ tọa độ Oxyz, cho đường thẳng \(d:\left\{ {\begin{array}{*{20}{c}}{x = - 1 + 2t}\\{y = - t}\\{z = - 2 - t}\end{array}} \right.\). Trong các đường thẳng sau, đường thẳng nào vuông góc với d? (Tổng hợp - Lớp 12)
- Trong không gian với hệ tọa độ Oxyz, cho hai đường thẳng \[{d_1}:\frac{1} = \frac{2} = \frac{1}\;\]và \({d_2}:\left\{ {\begin{array}{*{20}{c}}{x = t}\\{y = 2}\\{z = 2 + t}\end{array}} \right.\) Vị trí tương đối của ... (Tổng hợp - Lớp 12)
- Cho d,d′ là các đường thẳng có VTCP lần lượt là \[\overrightarrow u ,\overrightarrow u \prime ,M \in d,M\prime \in d\prime .\]Nếu \[\left[ {\vec u,\overrightarrow {u'} } \right]\overrightarrow {MM'} \ne 0\]thì: (Tổng hợp - Lớp 12)
- Điều kiện cần và đủ để hai đường thẳng cắt nhau là: (Tổng hợp - Lớp 12)
- Trong không gian với hệ tọa độ Oxyz, cho hai đường thẳng \({d_1}:\left\{ {\begin{array}{*{20}{c}}{x = 1 - 3t}\\{y = - t}\\{z = 1 - 2t}\end{array}} \right.\) và \[{d_2}:\frac{{ - 3}} = \frac{1} = \frac{2}\]. Vị trí tương đối ... (Tổng hợp - Lớp 12)
- Cho \[d,d'\] là các đường thẳng có VTCP lần lượt là \[\overrightarrow u ,\overrightarrow {u\prime } ,M \in d,M\prime \in d\prime \]Khi đó \[d \equiv d\prime \;\] nếu: (Tổng hợp - Lớp 12)
Trắc nghiệm mới nhất
- Em hãy chọn đáp án đúng nhất Hỗn số chỉ số phần đã tô màu trong hình vẽ sau là: (Toán học - Lớp 5)
- Em hãy chọn đáp án đúng nhất Hỗn số Chín và năm phần mười hai được viết là: (Toán học - Lớp 5)
- Em hãy chọn đáp án đúng nhất Hỗn số \({\bf{3}}\frac{{\bf{1}}}{{\bf{5}}}\) Hỗn số trên được đọc là: (Toán học - Lớp 5)
- Em hãy chọn đáp án đúng nhất Hỗn số \({\bf{5}}\frac{{\bf{7}}}{{\bf{9}}}\) Hỗn số trên được đọc là: (Toán học - Lớp 5)
- Em hãy chọn đáp án đúng nhất Số thích hợp điền vào ô trống là: \[\frac{1}{2} + \frac{2}{3} < \frac{2} < \frac{4} - \frac{1}{6}\] (Toán học - Lớp 5)
- Em hãy chọn đáp án đúng nhất Kết quả của biểu thức \[\frac{{\bf{9}}}{{\bf{4}}}{\bf{ - }}\left( {\frac{{\bf{2}}}{{\bf{3}}}{\bf{ + }}\frac{{\bf{5}}}{{\bf{6}}}} \right)\] là: (Toán học - Lớp 5)
- Em hãy chọn đáp án đúng nhất Kết quả của phép tính \[\frac{{\bf{8}}}{{\bf{3}}}{\bf{ - }}\frac{{\bf{1}}}{{\bf{2}}}\] là: (Toán học - Lớp 5)
- Em hãy chọn đáp án đúng nhất Kết quả của phép tính \[\frac{{\bf{6}}}{{\bf{5}}}{\bf{ + }}\frac{{\bf{1}}}{{\bf{9}}}\] là: (Toán học - Lớp 5)
- Kết quả của phép tính \(\frac{{{\bf{12}}}}{{\bf{7}}}{\bf{:6}}\) là: (Toán học - Lớp 5)
- Kết quả của phép tính \({\bf{9 \times }}\frac{{\bf{7}}}{{{\bf{18}}}}\) là: (Toán học - Lớp 5)