Bài tập  /  Bài đang cần trả lời

Cho tam giác ABC có 3 góc nhon noi tiếp dường tròn (O). Gọi I là trực tâm của tam giác. K là trung điểm AC. Phân giác góc A cắt (O) tại M. Vẽ đường cao AH. Chứng minh rằng OM di qua trung điểm N của BC

----- Nội dung dịch tự động từ ảnh -----
Bài 3: Cho tam giác ABC có 3 góc nhon noi tiếp dường tròn (O). Gọi I là trực tâm của tam
giác. K là trung diem AC. Phân giác góc A căt (O) tại M. Vẽ đường cao AH. Chứng minh
rằng:
a) OM di qua trung điểm N của BC.
b) HAM MAO
c) DAIB: DNOK, AI 20N
Bài 4: Cho tam giác ABC nội tiếp đường tròn (O). Các đường phân giác của góc A và B
cắt nhau ở I và cắt đường tròn theo thứ tự ở D và E. Tia CI cắt đưong tròn ở F.
a) Chứng minh F là điểm chính giữa của cung AB.
b) Chứng minh tam giác CDI cân.
c) DF Căt AB ở K. Chứng minh hai tam giác AKF và DKB đồng dạng.
1 Xem trả lời
Hỏi chi tiết
580
0
0
Dorrieeee
03/02/2022 16:36:44
+5đ tặng

1) Xét tam giác ADH vuông tại D

 

=>A:D;H cùng thuộc đường tròn đường kính AH

 

Xét tam giác AEH vuông tại E

 

=>A:E;H cùng thuộc đường tròn đường kính AH

 

=>A:D;H;E cùng thuộc đường tròn đường kính AH

 

I là tâm đường tròn đó=> i là trung điểm của AH

 

2) Xét tam giác ABC có BD;CE là đường cao

 

BD cắt CE tại H

 

=> H là trực tâm của tam giác ABC

 

=>AH là đường cao thứ 3

 

=> AH vuông góc BC
3) Xét tam giác ABD vuông tại D

 

sinˆA=BDAB=>sin60∘=BD6=>BD=3√3(cm)sin⁡A^=BDAB=>sin⁡60∘=BD6=>BD=33(cm)

 

4) Gọi AH cắt BC tại F

 

=> AF vuông góc BC

 

Xét tam giác ADH và tam giác AFC có:

 

Góc ADH=góc AFC=90

 

Góc FAC chung

 

=>Tam giác ADH ∼∼ tam giác AFC(g-g)

 

=> Góc AHD =góc ACF

 

Ta có: ID=IH

 

=> Tam giác IDH cân tại I

 

=>Góc IDH=góc IHD

 

Xét tam giác BDC vuông tại D có O là trung điểm BC

 

=> OD=OB=OC

 

=>Tam giác ODC cân tại O

 

=>Góc ODC=góc OCD
Tương tự ta có OBD=góc ODB

 

Có Góc BDO+góc ODC=90

 

=>góc  IDH+góc BDO=90

 

=>góc IDO=90

 

=> ID vuông góc DO

 

Xét (I) có DO vuông góc ID tại D

 

=> DO là tiếp tuyến của (I) tại D.

Mở khóa để xem toàn bộ nội dung trả lời

(?)
Bạn đã đạt đến giới hạn của mình. Bằng cách Đăng ký tài khoản, bạn có thể xem toàn bộ nội dung trả lời
Cải thiện điểm số của bạn bằng cách đăng ký tài khoản Lazi.
Xem toàn bộ các câu trả lời, chat trực tiếp 1:1 với đội ngũ Gia sư Lazi bằng cách Đăng nhập tài khoản ngay bây giờ
Tôi đã có tài khoản? Đăng nhập

Bạn hỏi - Lazi trả lời

Bạn muốn biết điều gì?

GỬI CÂU HỎI
Học tập không giới hạn cùng học sinh cả nước và AI, sôi động, tích cực, trải nghiệm

Hôm nay bạn thế nào? Hãy nhấp vào một lựa chọn, nếu may mắn bạn sẽ được tặng 50.000 xu từ Lazi

Vui Buồn Bình thường
×
Trợ lý ảo Trợ lý ảo
×
Đấu trường tri thức | Lazi Quiz Challenge +500k
Gửi câu hỏi
×