a) ΔABC cân tại A ⇒ AB = AC; ∠ABC = ∠ACB
∠BAC + ∠ABC + ∠ACB = 180độ
⇒ ∠BAC + 2 . ∠ABC = 180độ
⇒ ∠ABC = 180độ −∠BAC / 2 (1)
Ta có: AB = AC (cmt); BD = CE (gt)
⇒ AB + BD = AC + CE
⇒ AD = AE
⇒ ΔADE cân tại A ⇒ ∠ADE = ∠AED
∠DAE + ∠ADE + ∠AED = 180độ
⇒ ∠DAE + 2 . ∠ADE = 180độ
⇒ ∠ADE = 180độ − ∠DAE / 2 (2)
ừ (1) và (2) ⇒ ∠ABC = ∠ADE
Mà 2 góc này ở vị trí đồng vị ⇒ DE // BC
b) Ta có: ∠DBM = ∠ABC (2 góc đối đỉnh)
∠ECN = ∠ACB (2 góc đối đỉnh)
mà ∠ABC = ∠ACB (theo a) ⇒ ∠DBM = ∠ECN
Xét ΔDMB và ΔENC có:
∠DMB = ∠ENC = 90o
BD = CE (gt)
∠DBM = ∠ECN (cmt)
⇒ ΔDMB = ΔENC (cạnh huyền-góc nhọn)
⇒ DM = EN (2 cạnh tương ứng)
c) Ta có: ∠ABM + ∠ABC = 180o (2 góc kề bù)
∠ACN + ∠ACB = 180o (2 góc kề bù)
mà ∠ABC = ∠ACB (theo a) ⇒ ∠ABM = ∠ACN
Ta có: ΔDMB = ΔENC (theo b)
⇒ BM = CN (2 cạnh tương ứng)
Xét ΔABM và ΔACN có:
AB = AC (theo a)
∠ABM = ∠ACN (cmt)
BM = CN (cmt)
⇒ ΔABM = ΔACN (2 cạnh tương ứng)
⇒ ΔAMN cân tại A