a, (x^2 - 2x + 5)(x - 2) = (x^2 + x)(x - 5)
<=> x^3 - 2x^2 + 5x - 2x^2 + 4x - 10 = x^3 + x^2 - 5x^2 - 5x
<=> x^3 - x^3 - 2x^2 - 2x^2- x^2 + 5x^2 + 5x + 4x + 5x - 10 = 0
<=> (x^3 - x^3) + (- 2x^2 - 2x^2- x^2 + 5x^2) + (5x + 4x + 5x) - 10 = 0
<=> 0 + 0 + 14x - 10 = 0
<=> 14x - 10 = 0
<=> 14x = 10
<=> x = 10 : 14
<=> x = 5/7
Vậy x = 5/7
b, (2x^2 - 3x + 1)(x^2 - 5) - (x^2 - x)(2x^2 - x - 10) = 5
<=> (2x^2 - 3x + 1).(x^2 - 5) - (x^2 - x).[2.(x^2 - 5) - x] = 5
<=> (2x^2 - 3x + 1)(x^2 - 5) - 2(x^2 - x).(x^2 - 5) + x(x^2 - x) = 5
<=> (x^2 - 5)[(2x^2 - 3x + 1) - 2(x^2 - x)] + x(x^2 - x) = 5
<=> (x^2 - 5)(- x + 1) + x^2(x - 1) = 5
<=> - (x^2 - 5)(x - 1) + x^2(x - 1) = 5
<=> (x - 1)(- x^2 + 5 + x^2) = 5
<=> (x - 1).5 = 5
<=> x - 1 = 1
<=> x = 1 + 1
<=> x = 2
Vậy x = 2