Bài tập  /  Bài đang cần trả lời

Cho dãy số (un) với un = 4n – 3. Chứng minh rằng (un) là một cấp số cộng. Xác định số hạng đầu u1 và công sai d của của cấp số cộng này. Từ đó viết số hạng tổng quát un­ dưới dạng un = u1 + (n – 1)d

Cho dãy số (un) với un = 4n – 3. Chứng minh rằng (un) là một cấp số cộng. Xác định số hạng đầu u1 và công sai d của của cấp số cộng này. Từ đó viết số hạng tổng quát un­ dưới dạng un = u1 + (n – 1)d.
2 Xem trả lời
Hỏi chi tiết
248
Tham khảo câu trả lời từ Trợ lý ảo Lazi
Để chứng minh rằng (un) là một cấp số cộng, ta cần chứng minh rằng các số hạng liên tiếp của dãy có chênh lệch bằng một giá trị cố định.

Ta có:

u(n+1) - u(n) = (4(n+1) - 3) - (4n - 3) = 4

Vậy, (un) là một cấp số cộng với công sai d = 4 và số hạng đầu u1 = 1.

Số hạng tổng quát của dãy (un) có thể được viết dưới dạng:

un = u1 + (n-1)d = 1 + 4(n-1) = 4n - 3.
1
3
Kim Anh
20/06/2023 21:21:59
+5đ tặng

Ta có: un – un – 1 = (4n – 3) – [4(n – 1) – 3] = 4n – 3 – (4n – 4 – 3) = 4, với mọi n ≥ 2.

Do đó, dãy số (un) là một cấp số cộng với số hạng đầu u1 = 4 . 1 – 3 = 1 và công sai d = 4.

Số hạng tổng quát là: un = 1 + (n – 1) . 4

Mở khóa để xem toàn bộ nội dung trả lời

(?)
Bạn đã đạt đến giới hạn của mình. Bằng cách Đăng ký tài khoản, bạn có thể xem toàn bộ nội dung trả lời
Cải thiện điểm số của bạn bằng cách đăng ký tài khoản Lazi.
Xem toàn bộ các câu trả lời, chat trực tiếp 1:1 với đội ngũ Gia sư Lazi bằng cách Đăng nhập tài khoản ngay bây giờ
Tôi đã có tài khoản? Đăng nhập
1
2
Thái Văn
20/06/2023 21:22:01
Ta có: un – un – 1 = (4n – 3) – [4(n – 1) – 3] = 4n – 3 – (4n – 4 – 3) = 4, với mọi n ≥ 2.
Do đó, dãy số (un) là một cấp số cộng với số hạng đầu u1 = 4 . 1 – 3 = 1 và công sai d = 4.
Số hạng tổng quát là: un = 1 + (n – 1) . 4.

Bạn hỏi - Lazi trả lời

Bạn muốn biết điều gì?

GỬI CÂU HỎI
Học tập không giới hạn cùng học sinh cả nước và AI, sôi động, tích cực, trải nghiệm

Hôm nay bạn thế nào? Hãy nhấp vào một lựa chọn, nếu may mắn bạn sẽ được tặng 50.000 xu từ Lazi

Vui Buồn Bình thường
×
Trợ lý ảo Trợ lý ảo
Gửi câu hỏi
×