Sinα +sinβ cos(α +β) /cosα −sinβ sin(α +β) b) = tan(α +β) sinα +sinβ cos(α +β) /cosα −sinβ sin(α +β) b) = tan(α +β).
Tham khảo câu trả lời từ Trợ lý ảo Lazi To prove that sinα + sinβ cos(α + β) / cosα − sinβ sin(α + β) = tan(α + β), we can start by simplifying the left side of the equation. Using the trigonometric identity sin(α + β) = sinα cosβ + cosα sinβ, we can rewrite the numerator as: sinα + sinβ cos(α + β) = sinα + sinβ (cosα cosβ - sinα sinβ) Expanding the expression, we get: sinα + sinβ cos(α + β) = sinα + sinβ cosα cosβ - sinβ sinα sinβ Now, let's simplify the denominator using the trigonometric identity cos(α + β) = cosα cosβ - sinα sinβ: cosα − sinβ sin(α + β) = cosα − sinβ (sinα cosβ + cosα sinβ) Expanding the expression, we get: cosα − sinβ sin(α + β) = cosα − sinβ sinα cosβ - sinβ cosα sinβ Now, let's substitute these simplified expressions back into the original equation: (sinα + sinβ cosα cosβ - sinβ sinα sinβ) / (cosα − sinβ sinα cosβ - sinβ cosα sinβ) To simplify this expression further, we can factor out sinβ from the numerator and denominator: sinβ (sinα cosα cosβ - sinα sinβ - cosα sinβ) / sinβ (cosα - sinα cosβ - cosα sinβ) Now, we can cancel out sinβ from the numerator and denominator: (sinα cosα cosβ - sinα sinβ - cosα sinβ) / (cosα - sinα cosβ - cosα sinβ) Now, let's simplify the numerator: sinα cosα cosβ - sinα sinβ - cosα sinβ = sinα (cosα cosβ - sinβ) - sinβ (cosα + sinα) Now, let's simplify the denominator: cosα - sinα cosβ - cosα sinβ = cosα (1 - sinβ) - sinα cosβ Now, let's substitute these simplified expressions back into the equation: (sinα (cosα cosβ - sinβ) - sinβ (cosα + sinα)) / (cosα (1 - sinβ) - sinα cosβ) Expanding the expression, we get: (sinα cosα cosβ - sinα sinβ - sinβ cosα - sinβ sinα) / (cosα - cosα sinβ - sinα cosβ) Now, let's simplify the numerator further: sinα cosα cosβ - sinα sinβ - sinβ cosα - sinβ sinα = 0 Therefore, the left side of the equation simplifies to 0. Since tan(α + β) is not equal to 0, we can conclude that sinα + sinβ cos(α + β) / cosα − sinβ sin(α + β) is not equal to tan(α + β). Hence, the given equation is not true.