Bài tập  /  Bài đang cần trả lời

Giải bài có thưởng!

Tìm các số x, y lớn hơn hoặc bằng 0 biết: x^2+y^2=8 và (5x-3y-4z)=(3x-5y)

Tìm các số x, y lớn hơn hoặc bằng 0 biết: x^2+y^2=8 và (5x-3y-4z)=(3x-5y)
0 trả lời
Hỏi chi tiết
268
Tham khảo câu trả lời từ Trợ lý ảo Lazi
Để tìm các số x, y thỏa mãn các điều kiện đã cho, ta sẽ giải hệ phương trình sau:

1) x^2 + y^2 = 8
2) 5x - 3y - 4z = 3x - 5y

Bắt đầu với phương trình thứ hai, ta có thể đưa các thuộc tính của biến x và y về cùng một bên:

5x - 3y - 4z = 3x - 5y
2x + 2y = 4z
x + y = 2z

Tiếp theo, ta có thể thay thế x + y = 2z vào phương trình đầu tiên:

(x + y)^2 = 8
(2z)^2 = 8
4z^2 = 8
z^2 = 2
z = ±√2

Dựa vào giá trị của z, ta có thể tính được giá trị của x và y:

Khi z = √2:
x + y = 2z
x + y = 2√2
x = 2√2 - y

Thay x vào phương trình x^2 + y^2 = 8:
(2√2 - y)^2 + y^2 = 8
8 - 4√2y + 2y^2 + y^2 = 8
3y^2 - 4√2y = 0
y(3y - 4√2) = 0

Từ đó, ta có hai giá trị của y:
y = 0 hoặc y = 4√2/3

Khi y = 0:
x + y = 2√2
x + 0 = 2√2
x = 2√2

Khi y = 4√2/3:
x + y = 2√2
x + 4√2/3 = 2√2
x = 2√2 - 4√2/3
x = 2√2 - 8√2/3
x = 6√2/3 - 8√2/3
x = -2√2/3

Vậy, các cặp số (x, y) thỏa mãn các điều kiện đã cho là:
(2√2, 0), (-2√2/3, 4√2/3)

Bạn hỏi - Lazi trả lời

Bạn muốn biết điều gì?

GỬI CÂU HỎI
Học tập không giới hạn cùng học sinh cả nước và AI, sôi động, tích cực, trải nghiệm
Bài tập Toán học Lớp 8 mới nhất
Trắc nghiệm Toán học Lớp 8 mới nhất

Hôm nay bạn thế nào? Hãy nhấp vào một lựa chọn, nếu may mắn bạn sẽ được tặng 50.000 xu từ Lazi

Vui Buồn Bình thường

Học ngoại ngữ với Flashcard

×
Trợ lý ảo Trợ lý ảo
×
Gia sư Lazi Gia sư