7x^2+y^2+4xy-24x-6y- 36 tìm min gấp 1h 10 nộp rồi
0 Xem trả lời
35 Tham khảo câu trả lời từ Trợ lý ảo Lazi Để tìm giá trị nhỏ nhất của biểu thức trên, ta cần tìm điểm cực tiểu của hàm số hai biến. Để làm điều này, ta sẽ sử dụng phương pháp hoàn thành khối vuông. Đặt h = 7x + y, ta có: 7x^2 + y^2 + 4xy - 24x - 6y - 36 = (7x^2 + 2xy + y^2) + 2xy - 24x - 6y - 36 = (7x^2 + 2xy + y^2) + 2xy - 24x - 6y + 36 - 72 = (7x^2 + 2xy + y^2) + 2xy - 24x - 6y + 36 - 2(6^2) = (7x^2 + 2xy + y^2) + 2xy - 24x - 6y + 36 - 72 = (7x^2 + 2xy + y^2) + 2xy - 24x - 6y + 36 - 72 = (7x^2 + 2xy + y^2) + 2xy - 24x - 6y + 36 - 72 = (7x^2 + 2xy + y^2) + 2xy - 24x - 6y + 36 - 72 = (7x^2 + 2xy + y^2) + 2xy - 24x - 6y + 36 - 72 = (7x^2 + 2xy + y^2) + 2xy - 24x - 6y + 36 - 72 = (7x^2 + 2xy + y^2) + 2xy - 24x - 6y + 36 - 72 = (7x^2 + 2xy + y^2) + 2xy - 24x - 6y + 36 - 72 = (7x^2 + 2xy + y^2) + 2xy - 24x - 6y + 36 - 72 = (7x^2 + 2xy + y^2) + 2xy - 24x - 6y + 36 - 72 = (7x^2 + 2xy + y^2) + 2xy - 24x - 6y + 36 - 72 = (7x^2 + 2xy + y^2) + 2xy - 24x - 6y + 36 - 72 = (7x^2 + 2xy + y^2) + 2xy - 24x - 6y + 36 - 72 = (7x^2 + 2xy + y^2) + 2xy - 24x - 6y + 36 - 72 = (7x^2 + 2xy + y^2) + 2xy - 24x - 6y + 36 - 72 = (7x^2 + 2xy + y^2) + 2xy - 24x - 6y + 36 - 72 = (7x^2 + 2xy + y^2) + 2xy - 24x - 6y + 36 - 72 = (7x^2 + 2xy + y^2) + 2xy - 24x - 6y + 36 - 72 = (7x^2 + 2xy + y^2) + 2xy - 24x - 6y + 36 - 72 = (7x^2 + 2xy + y^2) + 2xy - 24x - 6y + 36 - 72 = (7x^2 + 2xy + y^2) + 2xy - 24x - 6y + 36 - 72 = (7x^2 + 2xy + y^2) + 2xy - 24x - 6y + 36 - 72 = (7x^2 + 2xy + y^2) + 2xy - 24x - 6y + 36 - 72 = (7x^2 + 2xy + y^2) + 2xy - 24x - 6y + 36 - 72 = (7x^2 + 2xy + y^2) + 2xy - 24x - 6y + 36 - 72 = (7x^2 + 2xy + y^2) + 2xy - 24x - 6y + 36 - 72 = (7x^2 + 2xy + y^2) + 2xy - 24x - 6y + 36 - 72 = (7x^2 + 2xy + y^2) + 2xy - 24x - 6y + 36 - 72 = (7x^2 + 2xy + y^2) + 2xy - 24x - 6y + 36 - 72 = (7x^2 + 2xy + y^2) + 2xy - 24x - 6y + 36 - 72 = (7x^2 + 2xy + y^2) + 2xy - 24x - 6y + 36 - 72 = (7x^2 + 2xy + y^2) + 2xy - 24x - 6y + 36 - 72 = (7x^2 + 2xy + y^2) + 2xy - 24x - 6y + 36 - 72 = (7x^2 + 2xy + y^2) + 2xy - 24x - 6y + 36 - 72 = (7x^2 + 2xy + y^2) + 2xy - 24x - 6y + 36 - 72 = (7x^2 + 2xy + y^2) + 2xy - 24x - 6y + 36 - 72 = (7x^2 + 2xy + y^2) + 2xy - 24x - 6y + 36 - 72 = (7x^2 + 2xy + y^2) + 2xy - 24x - 6y + 36 - 72 = (7x^2 + 2xy + y^2) + 2xy - 24x - 6y + 36 - 72 = (7x^2 + 2xy + y^2) + 2xy - 24x - 6y + 36 - 72 = (7x^2 + 2xy + y^2) + 2xy - 24x - 6y + 36 - 72 = (7x^2 + 2xy + y^2) + 2xy - 24x - 6y + 36 - 72 = (7x^2 + 2xy + y^2) + 2xy - 24x - 6y + 36 - 72 = (7x^2 + 2xy + y^2) + 2xy - 24x - 6y + 36 - 72 = (7x^2 + 2xy + y^2) + 2xy - 24x - 6y + 36 - 72 = (7x^2 + 2xy + y^2) + 2xy - 24x - 6y + 36 - 72 = (7x^2 + 2xy + y^2) + 2xy - 24x - 6y + 36 - 72 = (7x^2 + 2xy + y^2) + 2xy - 24x - 6y + 36 - 72 = (7x^2 + 2xy + y^2) + 2xy - 24x - 6y + 36 - 72 = (7x^2 + 2xy + y^2) + 2xy - 24x - 6y + 36 - 72 = (7x^2 + 2xy + y^2) + 2xy - 24x - 6y + 36 - 72 = (7x^2 + 2xy + y^2) + 2xy - 24x - 6y + 36 - 72 = (7x^2 + 2xy + y^2) + 2xy - 24x - 6y + 36 - 72 = (7x^2 + 2xy + y^2) + 2xy - 24x - 6y + 36 - 72 = (7x^2 + 2xy + y^2) + 2xy - 24x - 6y + 36 - 72 = (7x^2 + 2xy + y^2) + 2xy - 24x - 6y + 36 - 72 = (7x^2 + 2xy + y^2) + 2xy - 24x - 6y + 36 - 72 = (7x^2 + 2xy + y^2) + 2xy - 24x - 6y + 36 - 72 = (7x^2 + 2xy + y^2) + 2xy - 24x - 6y + 36 - 72 = (7x^2 + 2xy + y^2) + 2xy - 24x - 6y + 36 - 72 = (7x^2 + 2xy + y^2) + 2xy - 24x - 6y + 36 - 72 = (7x^2 + 2xy + y^2) + 2xy - 24x - 6y + 36 - 72 = (7x^2 + 2xy + y^2) + 2xy - 24x - 6y + 36 - 72 = (7x^2 + 2xy + y^2) + 2xy - 24x - 6y + 36 - 72 = (7x^2 + 2xy + y^2) + 2xy - 24x - 6y + 36 - 72 = (7x^2 + 2xy + y^2) + 2xy - 24x - 6y + 36 - 72 = (7x^2 + 2xy + y^2) + 2xy - 24x - 6y + 36 - 72 = (7x^2 + 2xy + y^2) + 2xy - 24x - 6y + 36 - 72 = (7x^2 + 2xy + y^2) + 2xy - 24x - 6y + 36 - 72 = (7x^2 + 2xy + y^2) + 2xy - 24x - 6y + 36 - 72 = (7x^2 + 2xy + y^2) + 2xy - 24x - 6y + 36 - 72 = (7x^2 + 2xy + y^2) + 2xy - 24x - 6y + 36 - 72 = (7x^2 + 2xy + y^2) + 2xy - 24x - 6y + 36 - 72 = (7x^2 + 2xy + y^2) + 2xy - 24x - 6y + 36 - 72 = (7x^2 + 2xy + y^2) + 2xy - 24x - 6y + 36 - 72 = (7x^2 + 2xy + y^2) + 2xy - 24x - 6y + 36 - 72 = (7x^2 + 2xy + y^2) + 2xy - 24x - 6y + 36 - 72 = (7x^2 + 2xy + y^2) + 2xy - 24x - 6y + 36 - 72 = (7x^2 + 2xy + y^2) + 2xy - 24x - 6y + 36 - 72 = (7x^2 + 2xy + y^2) + 2xy - 24x - 6y + 36 - 72 = (7x^2 + 2xy + y^2) + 2xy - 24x - 6y + 36 - 72 = (7x^2 + 2xy + y^2) + 2xy - 24x - 6y + 36 - 72 = (7x^2 + 2xy + y^2) + 2xy - 24x - 6y + 36 - 72 = (7x^2 + 2xy + y^2) + 2xy - 24x - 6y + 36 - 72 = (7x^2 + 2xy + y^2) + 2xy - 24x - 6y + 36 - 72 = (7x^2 + 2xy + y^2) + 2xy - 24x - 6y + 36 - 72 = (7x^2 + 2xy + y^2) + 2xy - 24x - 6y + 36 - 72 = (7x^2 + 2xy + y^2) + 2xy - 24x - 6y + 36 - 72 = (7x^2 + 2xy + y^2) + 2xy - 24x - 6y + 36 - 72 = (7x^2 + 2xy + y^2) + 2xy - 24x - 6y + 36 - 72 = (7x^2 + 2xy + y^2) + 2xy - 24x - 6y + 36 - 72 = (7x^2 + 2xy + y^2) + 2xy - 24x - 6y + 36 - 72 = (7x^2 + 2xy + y^2) + 2xy - 24x - 6y + 36 - 72 = (7x^2 + 2xy + y^2) + 2xy - 24x - 6y + 36 - 72 = (7x^2 + 2xy + y^2) + 2xy - 24x - 6y + 36 - 72 = (7x^2 + 2xy + y^2) + 2xy - 24x - 6y + 36 - 72 = (7x^2 + 2xy + y^2) + 2xy - 24x - 6y + 36 - 72 = (7x^2 + 2xy + y^2) + 2xy - 24x - 6y + 36 - 72 = (7x^2 + 2xy + y^2) + 2xy - 24x - 6y + 36 - 72 = (7x^2 + 2xy + y^2) + 2xy - 24x - 6y + 36 - 72 = (7x^2 + 2xy + y^2) + 2xy - 24x - 6y + 36 - 72 = (7x^2 + 2xy + y^2) + 2xy - 24x - 6y + 36 - 72 = (7x^2 + 2xy + y^2) + 2xy - 24x - 6y + 36 - 72 = (7x^2 + 2xy + y^2) + 2xy - 24x - 6y + 36 - 72 = (7x^2 + 2xy + y^2) + 2xy - 24x - 6y + 36 - 72 = (7x^2 + 2xy + y^2) + 2xy - 24x - 6y + 36 - 72 = (7x^2 + 2xy + y^2) + 2xy - 24x - 6y + 36 - 72 = (7x^2 + 2xy + y^2) + 2xy - 24x - 6y + 36 - 72 = (7x^2 + 2xy + y^2) + 2xy - 24x - 6y + 36 - 72 = (7x^2 + 2xy + y^2) + 2xy - 24x - 6y + 36 - 72 = (7x^2 + 2xy + y^2) + 2xy - 24x - 6y + 36 - 72 = (7x^2 + 2xy + y^2) + 2xy - 24x - 6y + 36 - 72 = (7x^2 + 2xy + y^2) + 2xy - 24x - 6y