Bài tập  /  Bài đang cần trả lời

Giải bài có thưởng!

Cho dãy số un

cho dãy số un. u1=4/3 ; un+1=(4*un+2)/(3*un+5). Tìm công thức shtq của (un)
0 Xem trả lời
Hỏi chi tiết
75
Tham khảo câu trả lời từ Trợ lý ảo Lazi
Để tìm công thức tổng quát của dãy số (un), ta sẽ sử dụng phương pháp đặt giả định.

Giả sử công thức tổng quát của dãy số (un) là un = an/bn, với a và b là hai dãy số thực.

Thay giá trị u1 vào công thức giả định, ta có:
u1 = a1/b1 = 4/3

Tiếp theo, ta sẽ tìm công thức của un+1 dựa trên công thức giả định:
un+1 = (4*un+2)/(3*un+5)

Thay công thức giả định vào, ta có:
an+1/bn+1 = (4*(an/bn) + 2)/(3*(an/bn) + 5)

Rút gọn phân số, ta có:
an+1/bn+1 = (4an + 2bn)/(3an + 5bn)

So sánh tử số và mẫu số của công thức trên với công thức giả định, ta có hệ phương trình sau:
4an + 2bn = an+1
3an + 5bn = bn+1

Giải hệ phương trình trên, ta có:
an+1 = 4an + 2bn
bn+1 = 3an + 5bn

Ta có thể giải hệ phương trình trên bằng phương pháp lặp đơn giản. Bắt đầu với giá trị a1 = 4, b1 = 3, ta có thể tính tiếp các giá trị a2, b2, a3, b3, ...

Sau khi tính được các giá trị a và b, ta có công thức tổng quát của dãy số (un) là un = an/bn.

Bạn hỏi - Lazi trả lời

Bạn muốn biết điều gì?

GỬI CÂU HỎI
Học tập không giới hạn cùng học sinh cả nước và AI, sôi động, tích cực, trải nghiệm

Hôm nay bạn thế nào? Hãy nhấp vào một lựa chọn, nếu may mắn bạn sẽ được tặng 50.000 xu từ Lazi

Vui Buồn Bình thường
×
Trợ lý ảo Trợ lý ảo
×
Đấu trường tri thức | Lazi Quiz Challenge +500k
Gửi câu hỏi
×