Bài tập  /  Bài đang cần trả lời

Tìm giá trị nhỏ nhất

tìm gtnn :y^2-y+1
2 Xem trả lời
Hỏi chi tiết
115
Tham khảo câu trả lời từ Trợ lý ảo Lazi
Để tìm giá trị nhỏ nhất của biểu thức y^2 - y + 1, ta có thể sử dụng phương pháp hoàn thành số hoặc sử dụng đạo hàm.

1. Sử dụng phương pháp hoàn thành số:
Biểu thức y^2 - y + 1 có thể được viết lại thành (y - 1/2)^2 + 3/4.
Vì (y - 1/2)^2 luôn không âm, nên giá trị nhỏ nhất của biểu thức y^2 - y + 1 là 3/4.

2. Sử dụng đạo hàm:
Đạo hàm của biểu thức y^2 - y + 1 theo y là 2y - 1.
Để tìm điểm cực tiểu, ta giải phương trình 2y - 1 = 0.
Từ đó, ta có y = 1/2.
Thay y = 1/2 vào biểu thức ban đầu, ta có giá trị nhỏ nhất là 3/4.

Vậy, giá trị nhỏ nhất của biểu thức y^2 - y + 1 là 3/4.
1
0
Phonggg
08/12/2023 20:56:28
+5đ tặng
y^2 - y + 1  
= y^2 - 2.y.1/2 + 1/4 + 3/4
= ( y-1/2)^2 + 3/4 
=> GTNN = 3/4 <=> y-1/2 =0<=>y=1/2

Mở khóa để xem toàn bộ nội dung trả lời

(?)
Bạn đã đạt đến giới hạn của mình. Bằng cách Đăng ký tài khoản, bạn có thể xem toàn bộ nội dung trả lời
Cải thiện điểm số của bạn bằng cách đăng ký tài khoản Lazi.
Xem toàn bộ các câu trả lời, chat trực tiếp 1:1 với đội ngũ Gia sư Lazi bằng cách Đăng nhập tài khoản ngay bây giờ
Tôi đã có tài khoản? Đăng nhập
1
0
Đặng Đình Tùng
08/12/2023 20:57:41
+4đ tặng
y^2 - y + 1 = (y^2 - y + 1/4) + 3/4
= (y-1/2)^2 + 3/4
Do (y-1/2)^2 ≥ 0=> (y-1/2)^2 +3/4 ≥ 3/4
Dấu = xảy ra : (y-1/2)^2=0
=> y= 1/2
Min =3/4 tại y = 1/2

Bạn hỏi - Lazi trả lời

Bạn muốn biết điều gì?

GỬI CÂU HỎI
Học tập không giới hạn cùng học sinh cả nước và AI, sôi động, tích cực, trải nghiệm

Hôm nay bạn thế nào? Hãy nhấp vào một lựa chọn, nếu may mắn bạn sẽ được tặng 50.000 xu từ Lazi

Vui Buồn Bình thường
×
Trợ lý ảo Trợ lý ảo
Gửi câu hỏi
×