a)
\( \sqrt[3]{27}-\sqrt[3]{-8}-\sqrt[3]{125} = \sqrt[3]{27-(-8)}-\sqrt[3]{125} = \sqrt[3]{35}-\sqrt[3]{125} \)
b)
\( \sqrt{20}-\sqrt{45}+3 \sqrt{18}+\sqrt{72} = \sqrt{4 \cdot 5}-\sqrt{9 \cdot 5}+3 \sqrt{9 \cdot 2}+\sqrt{36 \cdot 2} \)
\( = 2 \sqrt{5}-3 \sqrt{5}+3 \cdot 3 \sqrt{2}+6 \sqrt{2} \)
\( = -\sqrt{5}+9 \sqrt{2}+6 \sqrt{2} \)
\( = -\sqrt{5}+15 \sqrt{2} \)
c)
\( 2 \sqrt{5}+\sqrt{(1-\sqrt{5})^{2}} = 2 \sqrt{5}+\sqrt{1-2 \sqrt{5}+5} \)
\( = 2 \sqrt{5}+\sqrt{6-2 \sqrt{20}} \)
\( = 2 \sqrt{5}+\sqrt{(\sqrt{4}-\sqrt{5})^{2}} \)
\( = 2 \sqrt{5}+\sqrt{4-2 \sqrt{20}+5} \)
\( = 2 \sqrt{5}+\sqrt{9-2 \sqrt{80}} \)
\( = 2 \sqrt{5}+\sqrt{(\sqrt{9}-\sqrt{80})^{2}} \)
\( = 2 \sqrt{5}+\sqrt{9-2 \sqrt{9} \sqrt{80}+80} \)
\( = 2 \sqrt{5}+\sqrt{17-12 \sqrt{5}} \)
d)
\( \frac{1}{\sqrt{3}+1}+\frac{1}{\sqrt{3}-1}-2 \sqrt{3} = \frac{1}{\sqrt{3}+1}+\frac{1}{\sqrt{3}-1}-2 \sqrt{3} \cdot \frac{\sqrt{3}+1}{\sqrt{3}+1} \)
\( = \frac{1}{(\sqrt{3}+1)(\sqrt{3}-1)}}+\frac{1}{(\sqrt{3}-1)(\sqrt{3}+1)}}-2 \sqrt{3} \cdot \frac{\sqrt{3}+1}{\sqrt{3}+1} \)
\( = \frac{1}{3-1}+\frac{1}{3-1}-2 \sqrt{3} \cdot \frac{\sqrt{3}+1}{\sqrt{3}+1} \)
\( = \frac{1}{2}+\frac{1}{2}-2 \sqrt{3} \cdot 1 \)
\( = 1-2 \sqrt{3} \)
e) với \( a \geq 0, b \geq 0, a \neq b \),
\( \frac{a-b}{\sqrt{a}-\sqrt{b}}-\frac{\sqrt{a^{3}}-\sqrt{b^{3}}}{a-b} = \frac{a-b}{\sqrt{a}-\sqrt{b}}-\frac{\sqrt{a^{3}}-\sqrt{b^{3}}}{a-b} \cdot \frac{\sqrt{a}+\sqrt{b}}{\sqrt{a}+\sqrt{b}} \)
\( = \frac{a-b}{\sqrt{a}-\sqrt{b}}-\frac{(\sqrt{a}-\sqrt{b})(\sqrt{a^{2}}+\sqrt{ab}+\sqrt{b^{2}})}{a-b} \)
\( = \frac{a-b}{\sqrt{a}-\sqrt{b}}-\frac{\sqrt{a^{3}}-\sqrt{b^{3}}}{\sqrt{a}-\sqrt{b}} \cdot (\sqrt{a}+\sqrt{b}) \)
\( = \frac{a-b}{\sqrt{a}-\sqrt{b}}-\frac{(\sqrt{a}-\sqrt{b})(\sqrt{a^{2}}+\sqrt{ab}+\sqrt{b^{2}})}{\sqrt{a}-\sqrt{b}} \cdot (\sqrt{a}+\sqrt{b}) \)
\( = \frac{a-b}{\sqrt{a}-\sqrt{b}}-\frac{(\sqrt{a}-\sqrt{b})(a+b+\sqrt{ab})}{\sqrt{a}-\sqrt{b}} \)
\( = \frac{a-b}{\sqrt{a}-\sqrt{b}}-(a+b+\sqrt{ab}) \)
biểu thức đã được rút gọn thành \( \frac{a-b}{\sqrt{a}-\sqrt{b}}-(a+b+\sqrt{ab}) \).