Cho a, b, c>0. Chứng minh Cho a,b,c>0. Cmr ab/c+ bc/a+ac?b>= √ 3(a^2+b^2+c^2)
Tham khảo câu trả lời từ Trợ lý ảo Lazi To prove the inequality, we will use the Cauchy-Schwarz inequality. By Cauchy-Schwarz inequality, we have: (ab/c + bc/a + ac/b)(c/a + a/b + b/c) ≥ (√(ab/c * c/a) + √(bc/a * a/b) + √(ac/b * b/c))^2 Simplifying the right side, we get: (ab/c + bc/a + ac/b)(c/a + a/b + b/c) ≥ (√(b) + √(c) + √(a))^2 (ab/c + bc/a + ac/b)(c/a + a/b + b/c) ≥ (√(a) + √(b) + √(c))^2 Now, let's prove that (√(a) + √(b) + √(c))^2 ≥ 3(a^2 + b^2 + c^2) Expanding the left side, we get: (a + b + c + 2√(ab) + 2√(bc) + 2√(ac))^2 ≥ 3(a^2 + b^2 + c^2) Simplifying, we get: a^2 + b^2 + c^2 + 4ab + 4bc + 4ac + 4√(ab)√(bc) + 4√(ab)√(ac) + 4√(bc)√(ac) ≥ 3(a^2 + b^2 + c^2) Rearranging terms, we get: ab + bc + ac + 2√(ab)√(bc) + 2√(ab)√(ac) + 2√(bc)√(ac) ≥ 2(a^2 + b^2 + c^2) Using the AM-GM inequality, we have: ab + bc + ac + 2√(ab)√(bc) + 2√(ab)√(ac) + 2√(bc)√(ac) ≥ 2√(ab * bc) + 2√(ab * ac) + 2√(bc * ac) Simplifying, we get: ab + bc + ac + 2√(ab)√(bc) + 2√(ab)√(ac) + 2√(bc)√(ac) ≥ 2√(ab * bc * ac) + 2√(ab * bc * ac) + 2√(ab * bc * ac) ab + bc + ac + 2√(ab)√(bc) + 2√(ab)√(ac) + 2√(bc)√(ac) ≥ 6√(ab * bc * ac) Now, let's prove that 6√(ab * bc * ac) ≥ 2(a^2 + b^2 + c^2) Squaring both sides, we get: 36(ab * bc * ac) ≥ 4(a^2 + b^2 + c^2)^2 9(ab * bc * ac) ≥ (a^2 + b^2 + c^2)^2 Taking the square root of both sides, we get: 3√(ab * bc * ac) ≥ a^2 + b^2 + c^2 Since a, b, c > 0, we can multiply both sides by 3 to get: 9√(ab * bc * ac) ≥ 3(a^2 + b^2 + c^2) Substituting this inequality back into the previous inequality, we have: ab + bc + ac + 2√(ab)√(bc) + 2√(ab)√(ac) + 2√(bc)√(ac) ≥ 6√(ab * bc * ac) ≥ 2(a^2 + b^2 + c^2) Therefore, we have: (ab/c + bc/a + ac/b)(c/a + a/b + b/c) ≥ (√(a) + √(b) + √(c))^2 ≥ 3(a^2 + b^2 + c^2) Hence, the inequality ab/c + bc/a + ac/b ≥ √3(a^2 + b^2 + c^2) holds true.