Cho nửa đường tròn (O) đường kính BC. Lấy điểm A trên tia đối của tia CB. Kẻ tiếp tuyến AF với nửa đường tròn (O) (F là tiếp điểm), tia AF cắt tia tiếp tuyến Bx của nửa đường tròn (O) tại D (tia tiếp tuyến Bx nằm trong nửa mặt phẳng bờ BC chứa nửa đường tròn (O)). Gọi H là giao điểm của BF với DO; K là giao điểm thứ hai của DC với nửa đường tròn (O).
a/ Chứng minh rằng : AO.AB = AF.AD.
b/ Chứng minh tứ giác KHOC nội tiếp.
c/ Kẻ OM<!--[if gte vml 1]> <!--[endif]--><!--[if gte mso 9]--><xml> </xml><![endif]--> BC (M thuộc đoạn thẳng AD). Chứng minh <!--[if gte vml 1]> <!--[endif]--><!--[if gte mso 9]--><xml> </xml><![endif]-->
Bằng cách nhấp vào Đăng nhập, bạn đồng ý Chính sách bảo mật và Điều khoản sử dụng của chúng tôi. Nếu đây không phải máy tính của bạn, để đảm bảo an toàn, hãy sử dụng Cửa sổ riêng tư (Tab ẩn danh) để đăng nhập (New Private Window / New Incognito Window).
Hôm nay bạn thế nào? Hãy nhấp vào một lựa chọn, nếu may mắn bạn sẽ được tặng 50.000 xu từ Lazi
Vui | Buồn | Bình thường |