Bài tập  /  Bài đang cần trả lời

Chứng minh BE = CD và ADE cân tại A

giúp mik vẽ hình với làm bài xin các bạn
----- Nội dung dịch tự động từ ảnh -----
Bài 29. Cho A ABC cân tại A có 4<90° . Vẽ BE L AC tại E và CD. AB tại D.
a) Chứng minh BE = CD và A ADE cân tại A.
b) Gọi H là giao điểm của BE và CD. Chứng minh AH là tia phân giác của BẠC .
c) Chứng minh DE // BC.
d) Gọi M là trung điểm cạnh BC. Chứng minh ba điểm A, H, M thẳng hàng.
3 Xem trả lời
Hỏi chi tiết
173
3
0
Thắng đz
10/04 19:22:48
+5đ tặng

Mở khóa để xem toàn bộ nội dung trả lời

(?)
Bạn đã đạt đến giới hạn của mình. Bằng cách Đăng ký tài khoản, bạn có thể xem toàn bộ nội dung trả lời
Cải thiện điểm số của bạn bằng cách đăng ký tài khoản Lazi.
Xem toàn bộ các câu trả lời, chat trực tiếp 1:1 với đội ngũ Gia sư Lazi bằng cách Đăng nhập tài khoản ngay bây giờ
Tôi đã có tài khoản? Đăng nhập
2
0
qcuongg
10/04 19:24:06
+4đ tặng
a) Xét ∆ABE và ∆ACD có:
A chung
ADC=AEB=90°
AB=AC
Suy ra ∆ABE=∆ACD (ch-gn)
=> BE=CD, AE=AD
=>∆ADE cân tại A
b) Xét ∆ABC cân tại A có 2 đường cao BE, CD cắt nhau tại H
=> H là trực tâm của ∆ABC => AH là đường cao đồng thời là đường phân giác
=> AH là tia ph BAC
c) F là gđ của AH và DE
Xét ∆ADE có AF là đường phân giác đồng thời là đường cao
=> AF_|_DE <=> AH_|_DE, mà AH_|_BC => DE//BC
d) Xét ∆ABC cân tại A, có AM là đường trung tuyến đồng thời là đường cao
=> AM_|_BC, mà AH_|_BC => AM trùng AH => A, H, M thẳng hàng
1
0
Man
10/04 19:29:35
+3đ tặng
a) AB = AC
gocs A : chung
=> tgiac ABE = ACD (cạnh huyền - góc nhọn)
=> BE = CD
=> AE = AD
=> ADE cân tại A
b) ADH và AEH có :
AD = AE
AH : chung
=> ADH = AEH (cạnh gvuong ; cạnh huyền)
=> góc DAH = góc EAH 
=> AH là phân giác
c) góc B = góc C
DB = EC (AB = AC ; AE = AD)
=> DECB là hình thang cân
=> DE // BC
d) AED và ABC cân tại A , chung đỉnh
AH là phân giác góc A , tgiac AED
=> AH cũng là đường cao , trung tuyến , trung trực của tgiac aed
=> ah vgoc với trung điểm bc
=> a,h,m thẳng

Bạn hỏi - Lazi trả lời

Bạn muốn biết điều gì?

GỬI CÂU HỎI
Học tập không giới hạn cùng học sinh cả nước và AI, sôi động, tích cực, trải nghiệm

Hôm nay bạn thế nào? Hãy nhấp vào một lựa chọn, nếu may mắn bạn sẽ được tặng 50.000 xu từ Lazi

Vui Buồn Bình thường
×
Trợ lý ảo Trợ lý ảo
×
Đấu trường tri thức | Lazi Quiz Challenge +500k
Gửi câu hỏi
×