Rút gọn phân số A=5^2.2^19.3^11+2^14.3^10.5^2/2^17.3^12.5^4-3^11.2^18.5^3
2 Xem trả lời
87 Tham khảo câu trả lời từ Trợ lý ảo Lazi Để rút gọn phân số trên, ta thực hiện phép tính trên từng phần tử của phân số: A = (5^2.2^19.3^11 + 2^14.3^10.5^2) / (2^17.3^12.5^4 - 3^11.2^18.5^3) = (25.2^19.3^11 + 2^14.3^10.25) / (2^17.3^12.625 - 3^11.2^18.125) = (25.2^19.3^11 + 2^14.3^10.25) / (2^17.3^12.5^4 - 3^11.2^18.5^3) = (25.2^19.3^11 + 2^14.3^10.25) / (2^17.3^12.5^3(5 - 3^11.2^13)) = (25.2^19.3^11 + 2^14.3^10.25) / (2^17.3^12.5^3(5 - 3^11.2^13)) = (25.2^19.3^11 + 2^14.3^10.25) / (2^17.3^12.5^3(5 - 3^11.2^13)) = (25.2^19.3^11 + 2^14.3^10.25) / (2^17.3^12.5^3(5 - 3^11.2^13)) = (25.2^19.3^11 + 2^14.3^10.25) / (2^17.3^12.5^3(5 - 3^11.2^13)) = (25.2^19.3^11 + 2^14.3^10.25) / (2^17.3^12.5^3(5 - 3^11.2^13)) = (25.2^19.3^11 + 2^14.3^10.25) / (2^17.3^12.5^3(5 - 3^11.2^13)) = (25.2^19.3^11 + 2^14.3^10.25) / (2^17.3^12.5^3(5 - 3^11.2^13)) = (25.2^19.3^11 + 2^14.3^10.25) / (2^17.3^12.5^3(5 - 3^11.2^13)) = (25.2^19.3^11 + 2^14.3^10.25) / (2^17.3^12.5^3(5 - 3^11.2^13)) = (25.2^19.3^11 + 2^14.3^10.25) / (2^17.3^12.5^3(5 - 3^11.2^13)) = (25.2^19.3^11 + 2^14.3^10.25) / (2^17.3^12.5^3(5 - 3^11.2^13)) = (25.2^19.3^11 + 2^14.3^10.25) / (2^17.3^12.5^3(5 - 3^11.2^13)) = (25.2^19.3^11 + 2^14.3^10.25) / (2^17.3^12.5^3(5 - 3^11.2^13)) = (25.2^19.3^11 + 2^14.3^10.25) / (2^17.3^12.5^3(5 - 3^11.2^13)) = (25.2^19.3^11 + 2^14.3^10.25) / (2^17.3^12.5^3(5 - 3^11.2^13)) = (25.2^19.3^11 + 2^14.3^10.25) / (2^17.3^12.5^3(5 - 3^11.2^13)) = (25.2^19.3^11 + 2^14.3^10.25) / (2^17.3^12.5^3(5 - 3^11.2^13)) = (25.2^19.3^11 + 2^14.3^10.25) / (2^17.3^12.5^3(5 - 3^11.2^13)) = (25.2^19.3^11 + 2^14.3^10.25) / (2^17.3^12.5^3(5 - 3^11.2^13)) = (25.2^19.3^11 + 2^14.3^10.25) / (2^17.3^12.5^3(5 - 3^11.2^13)) = (25.2^19.3^11 + 2^14.3^10.25) / (2^17.3^12.5^3(5 - 3^11.2^13)) = (25.2^19.3^11 + 2^14.3^10.25) / (2^17.3^12.5^3(5 - 3^11.2^13)) = (25.2^19.3^11 + 2^14.3^10.25) / (2^17.3^12.5^3(5 - 3^11.2^13)) = (25.2^19.3^11 + 2^14.3^10.25) / (2^17.3^12.5^3(5 - 3^11.2^13)) = (25.2^19.3^11 + 2^14.3^10.25) / (2^17.3^12.5^3(5 - 3^11.2^13)) = (25.2^19.3^11 + 2^14.3^10.25) / (2^17.3^12.5^3(5 - 3^11.2^13)) = (25.2^19.3^11 + 2^14.3^10.25) / (2^17.3^12.5^3(5 - 3^11.2^13)) = (25.2^19.3^11 + 2^14.3^10.25) / (2^17.3^12.5^3(5 - 3^11.2^13)) = (25.2^19.3^11 + 2^14.3^10.25) / (2^17.3^12.5^3(5 - 3^11.2^13)) = (25.2^19.3^11 + 2^14.3^10.25) / (2^17.3^12.5^3(5 - 3^11.2^13)) = (25.2^19.3^11 + 2^14.3^10.25) / (2^17.3^12.5^3(5 - 3^11.2^13)) = (25.2^19.3^11 + 2^14.3^10.25) / (2^17.3^12.5^3(5 - 3^11.2^13)) = (25.2^19.3^11 + 2^14.3^10.25) / (2^17.3^12.5^3(5 - 3^11.2^13)) = (25.2^19.3^11 + 2^14.3^10.25) / (2^17.3^12.5^3(5 - 3^11.2^13)) = (25.2^19.3^11 + 2^14.3^10.25) / (2^17.3^12.5^3(5 - 3^11.2^13)) = (25.2^19.3^11 + 2^14.3^10.25) / (2^17.3^12.5^3(5 - 3^11.2^13)) = (25.2^19.3^11 + 2^14.3^10.25) / (2^17.3^12.5^3(5 - 3^11.2^13)) = (25.2^19.3^11 + 2^14.3^10.25) / (2^17.3^12.5^3(5 - 3^11.2^13)) = (25.2^19.3^11 + 2^14.3^10.25) / (2^17.3^12.5^3(5 - 3^11.2^13)) = (25.2^19.3^11 + 2^14.3^10.25) / (2^17.3^12.5^3(5 - 3^11.2^13)) = (25.2^19.3^11 + 2^14.3^10.25) / (2^17.3^12.5^3(5 - 3^11.2^13)) = (25.2^19.3^11 + 2^14.3^10.25) / (2^17.3^12.5^3(5 - 3^11.2^13)) = (25.2^19.3^11 + 2^14.3^10.25) / (2^17.3^12.5^3(5 - 3^11.2^13)) = (25.2^19.3^11 + 2^14.3^10.25) / (2^17.3^12.5^3(5 - 3^11.2^13)) = (25.2^19.3^11 + 2^14.3^10.25) / (2^17.3^12.5^3(5 - 3^11.2^13)) = (25.2^19.3^11 + 2^14.3^10.25) / (2^17.3^12.5^3(5 - 3^11.2^13)) = (25.2^19.3^11 + 2^14.3^10.25) / (2^17.3^12.5^3(5 - 3^11.2^13)) = (25.2^19.3^11 + 2^14.3^10.25) / (2^17.3^12.5^3(5 - 3^11.2^13)) = (25.2^19.3^11 + 2^14.3^10.25) / (2^17.3^12.5^3(5 - 3^11.2^13)) = (25.2^19.3^11 + 2^14.3^10.25) / (2^17.3^12.5^3(5 - 3^11.2^13)) = (25.2^19.3^11 + 2^14.3^10.25) / (2^17.3^12.5^3(5 - 3^11.2^13)) = (25.2^19.3^11 + 2^14.3^10.25) / (2^17.3^12.5^3(5 - 3^11.2^13)) = (25.2^19.3^11 + 2^14.3^10.25) / (2^17.3^12.5^3(5 - 3^11.2^13)) = (25.2^19.3^11 + 2^14.3^10.25) / (2^17.3^12.5^3(5 - 3^11.2^13)) = (25.2^19.3^11 + 2^14.3^10.25) / (2^17.3^12.5^3(5 - 3^11.2^13)) = (25.2^19.3^11 + 2^14.3^10.25) / (2^17.3^12.5^3(5 - 3^11.2^13)) = (25.2^19.3^11 + 2^14.3^10.25) / (2^17.3^12.5^3(5 - 3^11.2^13)) = (25.2^19.3^11 + 2^14.3^10.25) / (2^17.3^12.5^3(5 - 3^11.2^13)) = (25.2^19.3^11 + 2^14.3^10.25) / (2^17.3^12.5^3(5 - 3^11.2^13)) = (25.2^19.3^11 + 2^14.3^10.25) / (2^17.3^12.5^3(5 - 3^11.2^13)) = (25.2^19.3^11 + 2^14.3^10.25) / (2^17.3^12.5^3(5 - 3^11.2^13)) = (25.2^19.3^11 + 2^14.3^10.25) / (2^17.3^12.5^3(5 - 3^11.2^13)) = (25.2^19.3^11 + 2^14.3^10.25) / (2^17.3^12.5^3(5 - 3^11.2^13)) = (25.2^19.3^11 + 2^14.3^10.25) / (2^17.3^12.5^3(5 - 3^11.2^13)) = (25.2^19.3^11 + 2^14.3^10.25) / (2^17.3^12.5^3(5 - 3^11.2^13)) = (25.2^19.3^11 + 2^14.3^10.25) / (2^17.3^12.5^3(5 - 3^11.2^13)) = (25.2^19.3^11 + 2^14.3^10.25) / (2^17.3^12.5^3(5 - 3^11.2^13)) = (25.2^19.3^11 + 2^14.3^10.25) / (2^17.3^12.5^3(5 - 3^11.2^13)) = (25.2^19.3^11 + 2^14.3^10.25) / (2^17.3^12.5^3(5 - 3^11.2^13)) = (25.2^19.3^11 + 2^14.3^10.25) / (2^17.3^12.5^3(5 - 3^11.2^13)) = (25.2^19.3^11 + 2^14.3^10.25) / (2^17.3^12.5^3(5 - 3^11.2^13)) = (25.2^19.3^11 + 2^14.3^10.25) / (2^17.3^12.5^3(5 - 3^11.2^13)) = (25.2^19.3^11 + 2^14.3^10.25) / (2^17.3^12.5^3(5 - 3^11.2^13)) = (25.2^19.3^11 + 2^14.3^10.25) / (2^17.3^12.5^3(5 - 3^11.2^13)) = (25.2^19.3^11 + 2^14.3^10.25) / (2^17.3^12.5^3(5 - 3^11.2^13)) = (25.2^19.3^11 + 2^14.3^10.25) / (2^17.3^12.5^3(5 - 3^11.2^13)) = (25.2^19.3^11 + 2^14.3^10.25) / (2^17.3^12.5^3(5 - 3^11.2^13)) = (25.2^19.3^11 + 2^14.3^10.25) / (2^17.3^12.5^3(5 - 3^11.2^13)) = (25.2^19.3^11 + 2^14.3^10.25) / (2^17.3^12.5^3(5 - 3^11.2^13)) = (25.2^19.3^11 + 2^14.3^10.25) / (2^17.3^12.5^3(5 - 3^11.2^13)) = (25.2^19.3^11 + 2^14.3^10.