Bài tập  /  Bài đang cần trả lời

Chứng minh trong một tứ giác, tổng hai đường chéo lớn hơn nửa chu vi nhưng nhỏ hơn chu vi của tứ giác đó

----- Nội dung dịch tự động từ ảnh -----
1.7. Chứng minh trong một tứ giác, tổng hai đường chéo lớn hơn nửa chu vi
nhưng nhỏ hơn chu vi của tứ giác đó.
2 Xem trả lời
Hỏi chi tiết
67
1
0
Quang Huy
29/05 21:13:05
+5đ tặng

Mở khóa để xem toàn bộ nội dung trả lời

(?)
Bạn đã đạt đến giới hạn của mình. Bằng cách Đăng ký tài khoản, bạn có thể xem toàn bộ nội dung trả lời
Cải thiện điểm số của bạn bằng cách đăng ký tài khoản Lazi.
Xem toàn bộ các câu trả lời, chat trực tiếp 1:1 với đội ngũ Gia sư Lazi bằng cách Đăng nhập tài khoản ngay bây giờ
Tôi đã có tài khoản? Đăng nhập
1
0
Hồng Anh
29/05 21:13:18
+4đ tặng

Giả sử tứ giác ABCD có: AB=a,BC=b,CD=c,DA=d.
Gọi O là giao điểm của AC và BD ta có:
AC + BD = AO + OB + OC + OD > AB + CD = a + c
Tương tự: AC + BD > b + d

=> 2 ( AC + BD ) > a + b + c + d => AC + BD = a + b + c + d2

Vậy tổng hai đường chéo lớn hơn nửa chu vi của tứ giác.

Theo bất đẳng thức tam giác ta có như sau:

AC < a + b ; AC < c + d

BD < b + c ; BD < a + d

=>2(AC+BD)<2(a+b+c+d).

=>AC+BD<a+b+c+d.

Vậy tổng hai dường chéo nhỏ hơn chu vi tứ giác.

Học tốt

Bạn hỏi - Lazi trả lời

Bạn muốn biết điều gì?

GỬI CÂU HỎI
Học tập không giới hạn cùng học sinh cả nước và AI, sôi động, tích cực, trải nghiệm

Hôm nay bạn thế nào? Hãy nhấp vào một lựa chọn, nếu may mắn bạn sẽ được tặng 50.000 xu từ Lazi

Vui Buồn Bình thường
×
Trợ lý ảo Trợ lý ảo
×
Đấu trường tri thức | Lazi Quiz Challenge +500k
Gửi câu hỏi
×