\[ \sqrt{(1 + x)^3} - \sqrt{(1 - x)^3} = 2 + \sqrt{1 - x^2} \]
1. \( \sqrt{(1 + x)^3} \)
\[ \sqrt{(1 + x)^3} = \sqrt{(1 + x)(1 + x)(1 + x)} = (1 + x)\sqrt{1 + x} \]
2. \( \sqrt{(1 - x)^3} \)
\[ \sqrt{(1 - x)^3} = \sqrt{(1 - x)(1 - x)(1 - x)} = (1 - x)\sqrt{1 - x} \]
\[ (1 + x)\sqrt{1 + x} - (1 - x)\sqrt{1 - x} = 2 + \sqrt{1 - x^2} \]
\[ [(1 + x)\sqrt{1 + x} - (1 - x)\sqrt{1 - x}]^2 = (2 + \sqrt{1 - x^2})^2 \]
\[ (1 + x)^2(1 + x) - 2(1 + x)(1 - x)\sqrt{(1 + x)(1 - x)} + (1 - x)^2(1 - x) = 4 + 4\sqrt{1 - x^2} + (1 - x^2) \]
\[ (1 + 2x + x^2)(1 + x) - 2(1 - x^2) + (1 - 2x + x^2)(1 - x) = 4 + 4\sqrt{1 - x^2} + (1 - x^2) \]
\[ (1 + 2x + x^2 + x + 2x^2 + x^3) - 2(1 - x^2) + (1 - 2x + x^2 - x + 2x^2 - x^3) = 4 + 4\sqrt{1 - x^2} + 1 - x^2 \]
\[ (2 + 3x + 3x^2) - 2 + 2x^2 + (2 - 3x + 3x^2) = 5 + 4\sqrt{1 - x^2} \]
\[ 4x^2 + 4 = 5 + 4\sqrt{1 - x^2} \]
\[ 4\sqrt{1 - x^2} = 4x^2 +
\[ 4\sqrt{1 - x^2} = 4x^2 + 1 \]
\[ \sqrt{1 - x^2} = x^2 + \frac{1}{4} \]
\[ (\sqrt{1 - x^2})^2 = (x^2 + \frac{1}{4})^2 \]
\[ 1 - x^2 = x^4 + \frac{1}{16} + \frac{1}{2}x^2 \]
\[ 1 - x^2 = x^4 + \frac{1}{2}x^2 + \frac{1}{16} \]
\[ x^4 + \frac{1}{2}x^2 + \frac{1}{16} - x^2 - 1 = 0 \]
\[ x^4 - \frac{1}{2}x^2 - \frac{15}{16} = 0 \]
of \(x^2\). Let \(y = x^2\):
\[ y^2 - \frac{1}{2}y - \frac{15}{16} = 0 \]