Bài tập  /  Bài đang cần trả lời

Tìm giá trị nhỏ nhất của: 2x^2 + 1

tìm giá trị nhỏ nhất của
2x^2+1
 
3 Xem trả lời
Hỏi chi tiết
46
Tham khảo câu trả lời từ Trợ lý ảo Lazi
Để tìm giá trị nhỏ nhất của hàm số \( f(x) = 2x^2 + 1 \), ta cần xem xét đặc điểm của hàm số này.

Hàm số \( f(x) = 2x^2 + 1 \) là một hàm bậc hai có dạng \( ax^2 + bx + c \), trong đó \( a = 2 \), \( b = 0 \), và \( c = 1 \). Đối với hàm bậc hai \( ax^2 + bx + c \) với \( a > 0 \), đồ thị của nó là một parabol mở lên, và giá trị nhỏ nhất của hàm số đạt được tại đỉnh của parabol.

Đỉnh của parabol \( ax^2 + bx + c \) có tọa độ \( x = -\frac{b}{2a} \). Trong trường hợp này, \( b = 0 \) và \( a = 2 \), do đó:

\[ x = -\frac{0}{2 \cdot 2} = 0 \]

Giá trị nhỏ nhất của hàm số \( f(x) \) đạt được tại \( x = 0 \). Thay \( x = 0 \) vào hàm số \( f(x) \):

\[ f(0) = 2(0)^2 + 1 = 1 \]

Vậy, giá trị nhỏ nhất của hàm số \( 2x^2 + 1 \) là \( 1 \).
1
0
Ngoc Trinh
05/07/2024 10:47:29
+5đ tặng
vì 2x^2 luôn lớn hơn boặc bằng 0 vậy nên min của biểu thức đạt giá trị bằng 1 tại x=0

Mở khóa để xem toàn bộ nội dung trả lời

(?)
Bạn đã đạt đến giới hạn của mình. Bằng cách Đăng ký tài khoản, bạn có thể xem toàn bộ nội dung trả lời
Cải thiện điểm số của bạn bằng cách đăng ký tài khoản Lazi.
Xem toàn bộ các câu trả lời, chat trực tiếp 1:1 với đội ngũ Gia sư Lazi bằng cách Đăng nhập tài khoản ngay bây giờ
Tôi đã có tài khoản? Đăng nhập
2
0
Trung Trần
05/07/2024 10:49:37
+4đ tặng
tìm giá trị nhỏ nhất của
X^2≥0
=>2x^2≥0
=>2x^2+1≥1
Dâu bằng xảy ra khi 
X^2=0
=>x=0
VVậyGTNN là 1 khi x=0
 
1
0
Trúc Nguyễn
05/07/2024 11:10:08
+3đ tặng
Vì x^2>=0 với mọi x
nên 2x^2>=0 với mọi x
nên 2x^2+1>=1 với mọi x
Vậy 2x^2+1 min=1
khi 2x^2=0
khi x=0
CHẤM ĐIỂM NHA.

Bạn hỏi - Lazi trả lời

Bạn muốn biết điều gì?

GỬI CÂU HỎI
Học tập không giới hạn cùng học sinh cả nước và AI, sôi động, tích cực, trải nghiệm

Hôm nay bạn thế nào? Hãy nhấp vào một lựa chọn, nếu may mắn bạn sẽ được tặng 50.000 xu từ Lazi

Vui Buồn Bình thường
×
Trợ lý ảo Trợ lý ảo
Gửi câu hỏi
×