Bài tập  /  Bài đang cần trả lời

Giải bài có thưởng!

Cho đa thức P = ax^y³ +10xy² + 4y³-2x²y³-3xy² + bx²y. Biết a; b là hằng số và đa thức, P có bậc 3. Tìm a; b

Cho đa thức P = ax^y³ +10xy² + 4y³-2x²y³-3xy² + bx²y. Biết a; b là hằng số và đa thức
P có bậc 3. Tìm a; b.
0 trả lời
Hỏi chi tiết
88
Tham khảo câu trả lời từ Trợ lý ảo Lazi
Để tìm các hệ số \( a \) và \( b \) trong đa thức \( P = ax^y^3 + 10xy^2 + 4y^3 - 2x^2y^3 - 3xy^2 + bx^2y \) sao cho đa thức \( P \) có bậc 3, ta cần xác định các hạng tử có bậc cao nhất và đảm bảo rằng bậc của đa thức là 3.

Trước hết, ta phân tích bậc của từng hạng tử trong đa thức \( P \):

1. \( ax^y^3 \): Bậc của hạng tử này là \( y + 3 \). Tuy nhiên, điều này không hợp lý vì \( x \) không có số mũ. Có thể có lỗi đánh máy ở đây. Giả sử đúng là \( ax^3y \), thì bậc là \( 3 + 1 = 4 \).
2. \( 10xy^2 \): Bậc của hạng tử này là \( 1 + 2 = 3 \).
3. \( 4y^3 \): Bậc của hạng tử này là \( 3 \).
4. \( -2x^2y^3 \): Bậc của hạng tử này là \( 2 + 3 = 5 \).
5. \( -3xy^2 \): Bậc của hạng tử này là \( 1 + 2 = 3 \).
6. \( bx^2y \): Bậc của hạng tử này là \( 2 + 1 = 3 \).

Để đa thức \( P \) có bậc 3, các hạng tử có bậc cao hơn 3 phải bị loại bỏ hoặc không tồn tại. Do đó, hạng tử \( -2x^2y^3 \) phải bị loại bỏ. Điều này có nghĩa là hệ số của nó phải bằng 0.

Ngoài ra, hạng tử \( ax^y^3 \) cũng không hợp lý vì không có số mũ cho \( x \). Giả sử đó là lỗi đánh máy và đúng là \( ax^3y \), thì hạng tử này cũng phải bị loại bỏ vì bậc của nó là 4.

Vậy ta có:
- \( a = 0 \) để loại bỏ hạng tử \( ax^3y \).
- Hạng tử \( -2x^2y^3 \) không tồn tại, do đó không ảnh hưởng đến \( a \) và \( b \).

Sau khi loại bỏ các hạng tử không hợp lý, đa thức còn lại là:
\[ P = 10xy^2 + 4y^3 - 3xy^2 + bx^2y \]

Gộp các hạng tử cùng bậc:
\[ P = (10xy^2 - 3xy^2) + 4y^3 + bx^2y \]
\[ P = 7xy^2 + 4y^3 + bx^2y \]

Đa thức này có bậc 3 nếu \( b \) là bất kỳ hằng số nào. Do đó, \( a = 0 \) và \( b \) có thể là bất kỳ giá trị nào.

Tóm lại:
\[ a = 0 \]
\[ b \text{ là bất kỳ giá trị nào} \]

Bạn hỏi - Lazi trả lời

Bạn muốn biết điều gì?

GỬI CÂU HỎI
Học tập không giới hạn cùng học sinh cả nước và AI, sôi động, tích cực, trải nghiệm
Bài tập liên quan
Bài tập Toán học Lớp 8 mới nhất
Trắc nghiệm Toán học Lớp 8 mới nhất

Hôm nay bạn thế nào? Hãy nhấp vào một lựa chọn, nếu may mắn bạn sẽ được tặng 50.000 xu từ Lazi

Vui Buồn Bình thường

Học ngoại ngữ với Flashcard

×
Trợ lý ảo Trợ lý ảo
×
Đấu trường tri thức | Lazi Quiz Challenge +500K