----- Nội dung dịch tự động từ ảnh ----- 19) x+1 x-1 + 4 x-1 x+1 (x+1)(x-1)' 2 3. 3x-20 20) + = x-2x-3 (x-2)(x-3)' X X x+1 23) = x-1 x+2 (x-1)(x+2) x-1 8 x+3 2 1 3x-11 21) + = 22) = x-2 (x-2)(x-4) x-4 x+1 x-2 (x+1)(x-2)' 2 3 3x-18 24) + x-4x-3 (x-4)(x-3) X 3 −5x+1 X 3 -12x+33 25) + (01 26) x-5 x-8 (x-5)(x-8)" + = ; x+6x-8 (x+6)(x-8)
2 Xem trả lời
44 Tham khảo câu trả lời từ Trợ lý ảo Lazi Let's solve the given algebraic expressions step-by-step. ### Problem 19: \[ \frac{x+1}{x-1} + \frac{x-1}{x+1} = \frac{4}{(x+1)(x-1)} \] First, find a common denominator: \[ \frac{(x+1)^2 + (x-1)^2}{(x-1)(x+1)} = \frac{4}{(x+1)(x-1)} \] Simplify the numerator: \[ (x+1)^2 + (x-1)^2 = x^2 + 2x + 1 + x^2 - 2x + 1 = 2x^2 + 2 \] So, we have: \[ \frac{2x^2 + 2}{(x-1)(x+1)} = \frac{4}{(x+1)(x-1)} \] Simplify: \[ 2(x^2 + 1) = 4 \implies x^2 + 1 = 2 \implies x^2 = 1 \implies x = \pm 1 \] ### Problem 20: \[ \frac{2}{x-2} + \frac{3}{x-3} = \frac{3x-20}{(x-2)(x-3)} \] Find a common denominator: \[ \frac{2(x-3) + 3(x-2)}{(x-2)(x-3)} = \frac{3x-20}{(x-2)(x-3)} \] Simplify the numerator: \[ 2(x-3) + 3(x-2) = 2x - 6 + 3x - 6 = 5x - 12 \] So, we have: \[ \frac{5x - 12}{(x-2)(x-3)} = \frac{3x-20}{(x-2)(x-3)} \] Equate the numerators: \[ 5x - 12 = 3x - 20 \implies 2x = -8 \implies x = -4 \] ### Problem 21: \[ \frac{x-1}{x-2} + \frac{8}{(x-2)(x-4)} = \frac{x+3}{x-4} \] Find a common denominator: \[ \frac{(x-1)(x-4) + 8}{(x-2)(x-4)} = \frac{x+3}{x-4} \] Simplify the numerator: \[ (x-1)(x-4) + 8 = x^2 - 5x + 4 + 8 = x^2 - 5x + 12 \] So, we have: \[ \frac{x^2 - 5x + 12}{(x-2)(x-4)} = \frac{x+3}{x-4} \] Equate the numerators: \[ x^2 - 5x + 12 = (x+3)(x-2) \implies x^2 - 5x + 12 = x^2 + x - 6 \implies -5x + 12 = x - 6 \implies -6x = -18 \implies x = 3 \] ### Problem 22: \[ \frac{2}{x+1} + \frac{1}{x-2} = \frac{3x-11}{(x+1)(x-2)} \] Find a common denominator: \[ \frac{2(x-2) + 1(x+1)}{(x+1)(x-2)} = \frac{3x-11}{(x+1)(x-2)} \] Simplify the numerator: \[ 2(x-2) + (x+1) = 2x - 4 + x + 1 = 3x - 3 \] So, we have: \[ \frac{3x - 3}{(x+1)(x-2)} = \frac{3x-11}{(x+1)(x-2)} \] Equate the numerators: \[ 3x - 3 = 3x - 11 \implies -3 = -11 \implies \text{No solution} \] ### Problem 23: \[ \frac{x}{x-1} + \frac{x}{x+2} = \frac{x+1}{(x-1)(x+2)} \] Find a common denominator: \[ \frac{x(x+2) + x(x-1)}{(x-1)(x+2)} = \frac{x+1}{(x-1)(x+2)} \] Simplify the numerator: \[ x(x+2) + x(x-1) = x^2 + 2x + x^2 - x = 2x^2 + x \] So, we have: \[ \frac{2x^2 + x}{(x-1)(x+2)} = \frac{x+1}{(x-1)(x+2)} \] Equate the numerators: \[ 2x^2 + x = x + 1 \implies 2x^2 = 1 \implies x^2 = \frac{1}{2} \implies x = \pm \frac{1}{\sqrt{2}} \] ### Problem 24: \[ \frac{2}{x-4} + \frac{3}{x-3} = \frac{3x-18}{(x-4)(x-3)} \] Find a common denominator: \[ \frac{2(x-3) + 3(x-4)}{(x-4)(x-3)} = \frac{3x-18}{(x-4)(x-3)} \] Simplify the numerator: \[ 2(x-3) + 3(x-4) = 2x - 6 + 3x - 12 = 5x - 18 \] So, we have: \[ \frac{5x - 18}{(x-4)(x-3)} = \frac{3x-18}{(x-4)(x-3)} \] Equate the numerators: \[ 5x - 18 = 3x - 18 \implies 2x = 0 \implies x = 0 \] ### Problem 25: \[ \frac{x}{x-5} + \frac{3}{x-8} = \frac{-5x+1}{(x-5)(x-8)} \] Find a common denominator: \[ \frac{x(x-8) + 3(x-5)}{(x-5)(x-8)} = \frac{-5x+1}{(x-5)(x-8)} \] Simplify the numerator: \[ x(x-8) + 3(x-5) = x^2 - 8x + 3x - 15 = x^2 - 5x - 15 \] So, we have: \[ \frac{x^2 - 5x - 15}{(x-5)(x-8)} = \frac{-5x+1}{(x-5)(x-8)} \] Equate the numerators: \[ x^2 - 5x - 15 = -5x + 1 \implies x^2 - 16 = 1 \implies x^2 = 17 \implies x = \pm \sqrt{17} \] ### Problem 26: \[ \frac{x}{x+6} + \frac{3}{x-8} = \frac{-12x+33}{(x+6)(x-8)} \] Find a common denominator: \[ \frac{x(x-8) + 3(x+6)}{(x+6)(x-8)} = \frac{-12x+33}{(x+6)(x-8)} \] Simplify the numerator: \[ x(x-8) + 3(x+6) = x^2 - 8x + 3x + 18 = x^2 - 5x + 18 \] So, we have: \[ \frac{x^2 - 5x + 18}{(x+6)(x-8)} = \frac{-12x+33}{(x+6)(x-8)} \] Equate the numerators: \[ x^2 - 5x + 18 = -12x + 33 \implies x^2 + 7x - 15 = 0 \] Solve the quadratic equation: \[ x = \frac{-7 \pm \sqrt{49 + 60}}{2} = \frac{-7 \pm \sqrt{109}}{2} \] So, the solutions are: \[ x = \frac{-7 + \sqrt{109}}{2} \quad \text{and} \quad x = \frac{-7 - \sqrt{109}}{2} \]