Bài 1. Tính: a) A=1+3+32 +33 +...+30 +3100 b) B=2100-200 +298 - 297 +...-23 +22-2+1 Bài 2. Tìm tất cả các số nguyên x, sao cho: a) 6:(x-1) c) 14:(2x+3) b) 12: (x-1) d) 20:(2x+1) Bài 3.a) Tìm số nguyên n để (n+3)(n+1) b)Tìm số nguyên n để (n+4):(n+1) Bài 4. a)Tìm số nguyên x để x-13 là bội của x+2 b)Tìm số nguyên x để x+1 là ước của 4x+11 Bài 5. Tìm các số nguyên x, y biết : a) (x-1)(y+2)=0 b) x(y-3)=-12
Tham khảo câu trả lời từ Trợ lý ảo Lazi Let's solve the problems step by step. ### Bài 1 #### a) \( A = 1 + 3 + 3^2 + 3^3 + ... + 3^{100} \) This is a geometric series with the first term \( a = 1 \) and common ratio \( r = 3 \). The sum of the first \( n \) terms of a geometric series is given by: \[ S_n = a \frac{r^n - 1}{r - 1} \] Here, \( n = 101 \) (since it starts from \( 3^0 \) to \( 3^{100} \)). \[ A = \frac{3^{101} - 1}{3 - 1} = \frac{3^{101} - 1}{2} \] #### b) \( B = 2^{100} - 2^{99} + 2^{98} - 2^{97} + ... - 2^3 + 2^2 - 2 + 1 \) This is an alternating series. We can pair the terms: \[ (2^{100} - 2^{99}) + (2^{98} - 2^{97}) + ... + (2^2 - 2) + 1 \] Each pair \( (2^k - 2^{k-1}) = 2^{k-1}(2 - 1) = 2^{k-1} \). So, the series becomes: \[ 2^{99} + 2^{97} + ... + 2^1 + 1 \] This is another geometric series with the first term \( a = 2^1 \) and common ratio \( r = 2^2 = 4 \). The number of terms is \( 50 \) (since it starts from \( 2^{99} \) to \( 2^1 \)). \[ B = 2 \frac{4^{50} - 1}{4 - 1} + 1 = \frac{2(4^{50} - 1)}{3} + 1 \] ### Bài 2 #### a) \( 6 : (x - 1) \) \( x - 1 \) must be a divisor of 6. The divisors of 6 are \( \pm 1, \pm 2, \pm 3, \pm 6 \). So, \( x - 1 = \pm 1, \pm 2, \pm 3, \pm 6 \). Thus, \( x = 2, 0, 3, -1, 4, -2, 7, -5 \). #### b) \( 12 : (x - 1) \) \( x - 1 \) must be a divisor of 12. The divisors of 12 are \( \pm 1, \pm 2, \pm 3, \pm 4, \pm 6, \pm 12 \). So, \( x - 1 = \pm 1, \pm 2, \pm 3, \pm 4, \pm 6, \pm 12 \). Thus, \( x = 2, 0, 3, -2, 5, -3, 7, -5, 13, -11 \). #### c) \( 14 : (2x + 3) \) \( 2x + 3 \) must be a divisor of 14. The divisors of 14 are \( \pm 1, \pm 2, \pm 7, \pm 14 \). So, \( 2x + 3 = \pm 1, \pm 2, \pm 7, \pm 14 \). Solving for \( x \): \[ 2x + 3 = 1 \Rightarrow x = -1 \] \[ 2x + 3 = -1 \Rightarrow x = -2 \] \[ 2x + 3 = 2 \Rightarrow x = -\frac{1}{2} \] (not an integer) \[ 2x + 3 = -2 \Rightarrow x = -\frac{5}{2} \] (not an integer) \[ 2x + 3 = 7 \Rightarrow x = 2 \] \[ 2x + 3 = -7 \Rightarrow x = -5 \] \[ 2x + 3 = 14 \Rightarrow x = \frac{11}{2} \] (not an integer) \[ 2x + 3 = -14 \Rightarrow x = -\frac{17}{2} \] (not an integer) Thus, \( x = -1, -2, 2, -5 \). #### d) \( 20 : (2x + 1) \) \( 2x + 1 \) must be a divisor of 20. The divisors of 20 are \( \pm 1, \pm 2, \pm 4, \pm 5, \pm 10, \pm 20 \). So, \( 2x + 1 = \pm 1, \pm 2, \pm 4, \pm 5, \pm 10, \pm 20 \). Solving for \( x \): \[ 2x + 1 = 1 \Rightarrow x = 0 \] \[ 2x + 1 = -1 \Rightarrow x = -1 \] \[ 2x + 1 = 2 \Rightarrow x = \frac{1}{2} \] (not an integer) \[ 2x + 1 = -2 \Rightarrow x = -\frac{3}{2} \] (not an integer) \[ 2x + 1 = 4 \Rightarrow x = \frac{3}{2} \] (not an integer) \[ 2x + 1 = -4 \Rightarrow x = -\frac{5}{2} \] (not an integer) \[ 2x + 1 = 5 \Rightarrow x = 2 \] \[ 2x + 1 = -5 \Rightarrow x = -3 \] \[ 2x + 1 = 10 \Rightarrow x = \frac{9}{2} \] (not an integer) \[ 2x + 1 = -10 \Rightarrow x = -\frac{11}{2} \] (not an integer) \[ 2x + 1 = 20 \Rightarrow x = \frac{19}{2} \] (not an integer) \[ 2x + 1 = -20 \Rightarrow x = -\frac{21}{2} \] (not an integer) Thus, \( x = 0, -1, 2, -3 \). ### Bài 3 #### a) Tìm số nguyên \( n \) để \( (n + 3) : (n + 1) \) This means \( n + 3 \) must be divisible by \( n + 1 \). Let \( k = n + 1 \). Then \( n + 3 = k + 2 \). So, \( k + 2 \) must be divisible by \( k \). \[ k + 2 = mk \] \[ 2 = (m - 1)k \] Thus, \( k \) must be a divisor of 2. The divisors of 2 are \( \pm 1, \pm 2 \). So, \( k = 1, -1, 2, -2 \). Thus, \( n = 0, -2, 1, -3 \). #### b) Tìm số nguyên \( n \) để \( (n + 4) : (n + 1) \) This means \( n + 4 \) must be divisible by \( n + 1 \). Let \( k = n + 1 \). Then \( n + 4 = k + 3 \). So, \( k + 3 \) must be divisible by \( k \). \[ k + 3 = mk \] \[ 3 = (m - 1)k \] Thus, \( k \) must be a divisor of 3. The divisors of 3 are \( \pm 1, \pm 3 \). So, \( k = 1, -1, 3, -3 \). Thus, \( n = 0, -2, 2, -4 \). ### Bài 4 #### a) Tìm số nguyên \( x \) để \( x - 13 \) là bội của \( x + 2 \) This means \( x - 13 \) must be divisible by \( x + 2 \). Let \( k = x + 2 \). Then \( x - 13 = k - 15 \). So, \( k - 15 \) must be divisible by \( k \). \[ k - 15 = mk \] \[ -15 = (m - 1)k \] Thus, \( k \) must be a divisor of -15. The divisors of -15 are \( \pm 1, \pm 3, \pm 5, \pm 15 \). So, \( k = 1, -1, 3, -3, 5, -5, 15, -15 \). Thus, \( x = -1, -3, 1, -5, 3, -7, 13, -17 \). #### b) Tìm số nguyên \( x \) để \( x + 1 \) là ước của \( 4x + 11 \) This means \( x + 1 \) must be a divisor of \( 4x + 11 \). Let \( k = x + 1 \). Then \( x = k - 1 \). So, \( 4x + 11 = 4(k - 1) + 11 = 4k - 4 + 11 = 4k + 7 \). Thus, \( k \) must be a divisor of \( 4k + 7 \). \[ 4k + 7 = mk \] \[ 7 = (m - 4)k \] Thus, \( k \) must be a divisor of 7. The divisors of 7 are \( \pm 1, \pm 7 \). So, \( k = 1, -1, 7, -7 \). Thus, \( x = 0, -2, 6, -8 \). ### Bài 5 #### a) \( (x - 1)(y + 2) = 0 \) This means either \( x - 1 = 0 \) or \( y + 2 = 0 \). So, \( x = 1 \) or \( y = -2 \). Thus, the solutions are \( (x, y) = (1, y) \) or \( (x, y) = (x, -2) \). #### b) \( x(y - 3) = -12 \) This means \( x \) and \( y - 3 \) are pairs of factors of -12. The factor pairs of -12 are: \[ (1, -12), (-1, 12), (2, -6), (-2, 6), (3, -4), (-3, 4), (4, -3), (-4, 3), (6, -2), (-6, 2), (12, -1), (-12, 1) \] So, the solutions are: \[ (x, y) = (1, -9), (-1, 15), (2, -3), (-2, 9), (3, -1), (-3, 7), (4, -1), (-4, 7), (6, 1), (-6, 5), (12, 2), (-12, 4) \]