LH Quảng cáo: lazijsc@gmail.com

Bài tập  /  Bài đang cần trả lời

Giải bài có thưởng!

Tìm m để (d) / /(d'); (d) cắt (d') tại điểm có hoành độ là 1 

cho 2 đường thăng 
(d)  y= -2x+3
(d')  y= (3-m).x+m-1
Tìm m để (d) / /(d'); (d) cắt (d') tại điểm có hoành độ là 1 
c, (d) cắt (d') tại điểm nằm trên trục oy 
d,  (d);(d');(d1) có pt y=x đồng quy
0 trả lời
Hỏi chi tiết
34
Tham khảo câu trả lời từ Trợ lý ảo Lazi
Để giải các bài toán liên quan đến hai đường thẳng \( (d) \) và \( (d') \), ta cần phân tích từng yêu cầu cụ thể.

### 1. Tìm \( m \) để \( (d) \) cắt \( (d') \) tại điểm có hoành độ là 1

Đường thẳng \( (d) \) có phương trình: \( y = -2x + 3 \)

Đường thẳng \( (d') \) có phương trình: \( y = (3 - m)x + m - 1 \)

Để \( (d) \) và \( (d') \) cắt nhau tại điểm có hoành độ là 1, ta thay \( x = 1 \) vào cả hai phương trình và đặt \( y \) bằng nhau:

Phương trình của \( (d) \) tại \( x = 1 \):
\[ y = -2(1) + 3 = 1 \]

Phương trình của \( (d') \) tại \( x = 1 \):
\[ y = (3 - m)(1) + m - 1 = 3 - m + m - 1 = 2 \]

Để hai phương trình này có cùng giá trị \( y \):
\[ 1 = 2 \]

Điều này không thể xảy ra, do đó không có giá trị \( m \) nào thỏa mãn điều kiện này.

### 2. Tìm \( m \) để \( (d) \) song song với \( (d') \)

Hai đường thẳng song song khi và chỉ khi hệ số góc của chúng bằng nhau. Hệ số góc của \( (d) \) là -2, hệ số góc của \( (d') \) là \( 3 - m \).

Do đó, ta có:
\[ 3 - m = -2 \]
\[ m = 5 \]

Vậy \( m = 5 \) là giá trị để \( (d) \) song song với \( (d') \).

### 3. Tìm \( m \) để \( (d) \) cắt \( (d') \) tại điểm nằm trên trục Oy

Điểm nằm trên trục Oy có hoành độ \( x = 0 \). Ta thay \( x = 0 \) vào cả hai phương trình và đặt \( y \) bằng nhau:

Phương trình của \( (d) \) tại \( x = 0 \):
\[ y = -2(0) + 3 = 3 \]

Phương trình của \( (d') \) tại \( x = 0 \):
\[ y = (3 - m)(0) + m - 1 = m - 1 \]

Để hai phương trình này có cùng giá trị \( y \):
\[ 3 = m - 1 \]
\[ m = 4 \]

Vậy \( m = 4 \) là giá trị để \( (d) \) cắt \( (d') \) tại điểm nằm trên trục Oy.

### 4. Tìm \( m \) để \( (d) \), \( (d') \), và \( (d1) \) có phương trình \( y = x \) đồng quy

Điểm đồng quy là điểm mà cả ba đường thẳng cùng đi qua. Ta tìm giao điểm của \( (d) \) và \( (d1) \), rồi kiểm tra xem điểm này có nằm trên \( (d') \) hay không.

Giao điểm của \( (d) \) và \( (d1) \):
\[ -2x + 3 = x \]
\[ 3x = 3 \]
\[ x = 1 \]
\[ y = 1 \]

Giao điểm của \( (d) \) và \( (d1) \) là \( (1, 1) \).

Kiểm tra xem điểm \( (1, 1) \) có nằm trên \( (d') \) hay không:
\[ 1 = (3 - m)(1) + m - 1 \]
\[ 1 = 3 - m + m - 1 \]
\[ 1 = 2 \]

Điều này không thể xảy ra, do đó không có giá trị \( m \) nào thỏa mãn điều kiện này.

Tóm lại:
- Không có giá trị \( m \) để \( (d) \) cắt \( (d') \) tại điểm có hoành độ là 1.
- \( m = 5 \) để \( (d) \) song song với \( (d') \).
- \( m = 4 \) để \( (d) \) cắt \( (d') \) tại điểm nằm trên trục Oy.
- Không có giá trị \( m \) để \( (d) \), \( (d') \), và \( (d1) \) đồng quy.

Bạn hỏi - Lazi trả lời

Bạn muốn biết điều gì?

GỬI CÂU HỎI
Học tập không giới hạn cùng học sinh cả nước và AI, sôi động, tích cực, trải nghiệm
Trắc nghiệm Toán học Lớp 9 mới nhất

Hôm nay bạn thế nào? Hãy nhấp vào một lựa chọn, nếu may mắn bạn sẽ được tặng 50.000 xu từ Lazi

Vui Buồn Bình thường

Học ngoại ngữ với Flashcard

×
Trợ lý ảo Trợ lý ảo
×
Gia sư Lazi Gia sư