Bài tập  /  Bài đang cần trả lời

Một người đi xe đạp xuất phát từ A với đến B với vận tốc dự định là v trên km/giờ. Nếu xe tăng vận tốc thêm 3 km/giờ thì đến sớm hơn dự định 18p tính AB và v dự định

Một người đi xe đạp xuất phát từ A với đến B với vận tốc dự định là v trên km trên giờ Nếu xe tăng vận tốc thêm 3 km/giờ thì đến sớm hơn dự định 18p tính AB và v dự định
1 Xem trả lời
Hỏi chi tiết
59
Tham khảo câu trả lời từ Trợ lý ảo Lazi
Để giải bài toán này, chúng ta cần thiết lập một số phương trình dựa trên các dữ kiện đã cho.

1. **Gọi**:
- \( d \): khoảng cách từ A đến B (km)
- \( v \): vận tốc dự định (km/giờ)
- Thời gian dự định để đi từ A đến B là \( t = \frac{d}{v} \) (giờ).

2. **Khi tăng vận tốc thêm 3 km/giờ**, vận tốc mới là \( v + 3 \) km/giờ.
- Thời gian mới là \( t' = \frac{d}{v + 3} \) (giờ).

3. **Theo đề bài**, nếu đi với vận tốc mới, thời gian sẽ sớm hơn 18 phút (cần chuyển đổi sang giờ):
- 18 phút = \( \frac{18}{60} = 0.3 \) giờ.

4. **Thiết lập phương trình**:
\[
t - t' = 0.3
\]
Thay \( t \) và \( t' \) vào phương trình:

\[
\frac{d}{v} - \frac{d}{v + 3} = 0.3
\]

5. **Giải phương trình**:
Nhân hai vế với \( v(v + 3) \) để loại bỏ mẫu:
\[
d(v + 3) - dv = 0.3v(v + 3)
\]
Sắp xếp lại:
\[
3d = 0.3v(v + 3)
\]
Chia hai vế cho 0.3:
\[
10d = v(v + 3)
\]
\[
v^2 + 3v - 10d = 0
\]

6. **Giải phương trình bậc hai**:
Sử dụng công thức tính nghiệm:
\[
v = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}
\]
Trong trường hợp này:
- \( a = 1 \)
- \( b = 3 \)
- \( c = -10d \)

\[
v = \frac{-3 \pm \sqrt{3^2 - 4 \cdot 1 \cdot (-10d)}}{2 \cdot 1}
\]
\[
v = \frac{-3 \pm \sqrt{9 + 40d}}{2}
\]

7. **Rút ra khoảng cách \( d \)**:
Chúng ta có hai ẩn \( v \) và \( d \). Tuy nhiên, không có đủ thông tin từ bài toán này để xác định giá trị cụ thể cho \( d \) và \( v \) mà không thêm điều kiện bổ sung.

Vậy kết quả cuối cùng là:
\[
v = \frac{-3 \pm \sqrt{9 + 40d}}{2}
\]
Và \( d \) có thể là kết quả của vận tốc trên. Để có giá trị số cụ thể, bạn cần một điều kiện bổ sung nào đó để xác định giá trị cho một trong hai biến.
0
0
Thao Pham
08/08/2024 22:30:46
+5đ tặng
gọi t^ là thời gian đi với vận tốc v+3 
gọi t là thời gian đi với vận tốc v  
gọi a là quãng đường AB ta có 
a=vt
a=(v+3)(t - 3/10)
<=>vt=vt- 3v/10 + 3t - 9/10
<=>9/10 = 3t - 3v/10
<=>3/10 = t- v/10
<=>t=(v+3)/10
lại có :
t=a/v
t^ = a/(v+3) 
vì : t-t^ = 3/10 
=>t^ = t - 3/10
=>t^ = (v+3)/10 - 3/10
=>t^ = v/10
=>a/(v+3) = v/10    (1)
ta lại có:
vì t-t^=3/10 
=> a/v - a/(v+3) = 3/10
<=> (av + 3a - av ) / (v^2 + 3v ) = 3/10
<=> 3a / (v^2 + 3v) = 3/10 
<=> 10a = v^2 + 3v 
<=> a= (v^2 +3v )/10 
thay vào (1) ta có :
(v^2 + 3v)(v+3)/10 = v / 10 
<=>  v^3 + 6v^2 + 9v=v
<=> v^3 + 6v^2 + 8v +0 = 0  (phương trình bậc 2 => bấm máy )
=> v ~ 3
=>t=(3+3)/10
=>t=3/5h
=>AB= 3/5*3
=>AB = 9/5 km =1.8 km
vậy vận tốc dự định của người đó là 3km/h và quãng đường AB là 1.8km

Mở khóa để xem toàn bộ nội dung trả lời

(?)
Bạn đã đạt đến giới hạn của mình. Bằng cách Đăng ký tài khoản, bạn có thể xem toàn bộ nội dung trả lời
Cải thiện điểm số của bạn bằng cách đăng ký tài khoản Lazi.
Xem toàn bộ các câu trả lời, chat trực tiếp 1:1 với đội ngũ Gia sư Lazi bằng cách Đăng nhập tài khoản ngay bây giờ
Tôi đã có tài khoản? Đăng nhập

Bạn hỏi - Lazi trả lời

Bạn muốn biết điều gì?

GỬI CÂU HỎI
Học tập không giới hạn cùng học sinh cả nước và AI, sôi động, tích cực, trải nghiệm

Hôm nay bạn thế nào? Hãy nhấp vào một lựa chọn, nếu may mắn bạn sẽ được tặng 50.000 xu từ Lazi

Vui Buồn Bình thường
×
Trợ lý ảo Trợ lý ảo
×
Đấu trường tri thức | Lazi Quiz Challenge +500k
Gửi câu hỏi
×