LH Quảng cáo: lazijsc@gmail.com

Bài tập  /  Bài đang cần trả lời

Giải bài có thưởng!

Tìm giá trị biểu thức A=x^101-101x^100+101x^99+101x^98+..-101x^

tìm giá trị biểu thức của  A=x^101-101x^100+101x^99+101x^98+..-101x^
 
0 trả lời
Hỏi chi tiết
31
Tham khảo câu trả lời từ Trợ lý ảo Lazi
Để tìm giá trị biểu thức

\[
A = x^{101} - 101x^{100} + 101x^{99} + 101x^{98} + \ldots - 101x^0,
\]

ta có thể viết lại biểu thức này theo cách rõ ràng hơn. Biểu thức của \(A\) có thể được phân tách như sau:

- Phần đầu tiên là \(x^{101}\).
- Phần thứ hai là \(-101 x^{100}\).
- Phần còn lại là tổng của \(101\) nhân với các lũy thừa của \(x\) từ \(99\) đến \(0\), nhưng với thành phần đầu là \(+101\) cho \(x^{99}\) và tất cả các thành phần còn lại đều là \(-101\).

Như vậy, ta có thể chuyển tổng này vào dạng:

\[
A = x^{101} - 101x^{100} + 101 \left( x^{99} + x^{98} + \ldots + x^0 \right).
\]

Tổng của các lũy thừa \(x^{99} + x^{98} + \ldots + x^0\) là một chuỗi hình học với số hạng đầu là \(1\) và số hạng cuối là \(x^{99}\). Công thức tổng quát cho tổng của \(n\) số hạng trong chuỗi hình học là:

\[
S_n = \frac{a(1 - r^n)}{1 - r},
\]

với \(a\) là số hạng đầu tiên và \(r\) là tỷ lệ. Ở đây, \(a = 1\), \(r = x\), và có tổng cộng \(100\) hạng (từ \(0\) đến \(99\)), vì vậy:

\[
\text{Tổng} = \frac{1(1 - x^{100})}{1 - x} = \frac{1 - x^{100}}{1 - x}.
\]

Sau đó, thay tổng vào biểu thức \(A\):

\[
A = x^{101} - 101x^{100} + 101 \cdot \frac{1 - x^{100}}{1 - x}.
\]

Cuối cùng, chỉnh sửa biểu thức này. Thay \(x^{101}\) và \(-101x^{100}\) thành dạng chung và cộng dồn lại:

\[
A = x^{101} - 101x^{100} + \frac{101 - 101x^{100}}{1 - x} = \frac{x^{101}(1 - x) - 101x^{100}(1 - x) + 101 - 101x^{100}}{1 - x}.
\]

Kết quả cuối cùng sẽ phụ thuộc vào giá trị của \(x\). Nếu cần đơn giản hơn hay trường hợp đặc biệt, bạn có thể tính cho một giá trị cụ thể của \(x\) nào đó (ví dụ như \(x=1\), hoặc \(x=0\)). Hãy cho tôi biết nếu bạn cần xác định \(A\) cho một giá trị \(x\) nhất định!

Bạn hỏi - Lazi trả lời

Bạn muốn biết điều gì?

GỬI CÂU HỎI
Học tập không giới hạn cùng học sinh cả nước và AI, sôi động, tích cực, trải nghiệm
Bài tập Toán học Lớp 8 mới nhất
Trắc nghiệm Toán học Lớp 8 mới nhất

Hôm nay bạn thế nào? Hãy nhấp vào một lựa chọn, nếu may mắn bạn sẽ được tặng 50.000 xu từ Lazi

Vui Buồn Bình thường

Học ngoại ngữ với Flashcard

×
Trợ lý ảo Trợ lý ảo
×
Gia sư Lazi Gia sư