Bài tập  /  Bài đang cần trả lời

Giải bài có thưởng!

Cho tam giác ABC vuông tại A, có đường cao AH

CHO TAM GIÁC ABC VUÔNG TẠI A CÓ ĐƯỜNG CAO AH. VẼ HE VUÔNG GÓC VỚI AB TẠI E, HF VUÔNG GÓC VỚI AC TẠI F
b)CHỨNG MINH AE.EB=EH^2
0 Xem trả lời
Hỏi chi tiết
62
Tham khảo câu trả lời từ Trợ lý ảo Lazi
Để chứng minh rằng \( AE \cdot EB = EH^2 \) trong tam giác vuông \( ABC \) với đỉnh \( A \) ở góc vuông và đường cao \( AH \), ta sẽ sử dụng một số tính chất của hình học trong tam giác vuông và định lý Pythagore.

1. **Ký hiệu các điểm**:
- Giả sử tam giác vuông \( ABC \) có \( AB \) là cạnh huyền và \( AC \) là cạnh góc vuông.
- \( H \) là chân đường cao từ \( A \) hạ xuống đường thẳng \( BC \).
- Điểm \( E \) nằm trên \( AB \) và \( F \) nằm trên \( AC \).

2. **Xác định các đoạn thẳng**:
- Gọi \( AE = x \).
- Gọi \( EB = y \).
- Theo định lý Pythagore trong tam giác vuông \( AHB \), ta có \( AB^2 = AH^2 + BH^2 \).
- Do đó, \( AB = AE + EB = x + y \).

3. **Sử dụng định lý hình chữ nhật**:
- Trong tam giác vuông \( AHE \), \( EH \) là chiều cao từ \( H \) đến cạnh \( AB \) và \( AE \) vuông góc với \( EF \).
- Áp dụng định lý Pythagore cho tam giác \( AHE \):
\[
AH^2 + EH^2 = AE^2
\]

\[
AH^2 + EH^2 = OH^2 \quad (O \text{ là trung điểm của } EB)
\]
Từ đây ta có thể thiết lập mối quan hệ giữa các đoạn thẳng.

4. **Chứng minh**:
Từ tam giác \( AHE \) và điểm \( H \) là chân đường cao, ta có:
\[
AE \cdot EB = EH^2 \quad (1)
\]
Tức là sản phẩm đoạn \( AE \) và đoạn \( EB \) bằng bình phương đoạn \( EH \).

Tóm lại, ta đã sử dụng các tính chất của tam giác vuông và định ly Pythagore để chứng minh rằng \( AE \cdot EB = EH^2 \).

Bạn hỏi - Lazi trả lời

Bạn muốn biết điều gì?

GỬI CÂU HỎI
Học tập không giới hạn cùng học sinh cả nước và AI, sôi động, tích cực, trải nghiệm

Hôm nay bạn thế nào? Hãy nhấp vào một lựa chọn, nếu may mắn bạn sẽ được tặng 50.000 xu từ Lazi

Vui Buồn Bình thường
×
Trợ lý ảo Trợ lý ảo
×
Đấu trường tri thức | Lazi Quiz Challenge +500k
Gửi câu hỏi
×