Bài tập  /  Bài đang cần trả lời

Giải bài có thưởng!

Sử dụng phương pháp xét dư 2 vế để tìm nghiệm

Sử dụng phương pháp xét dư 2 vế nha mn.


----- Nội dung dịch tự động từ ảnh -----
Giải phương trình nghiệm nguyên:

\( x^2 + y^2 + z^2 = 1980 \)
0 trả lời
Hỏi chi tiết
23
Tham khảo câu trả lời từ Trợ lý ảo Lazi
Để giải phương trình \( x^2 + y^2 + z^2 = 1980 \) với nghiệm nguyên \( x, y, z \), ta sẽ dùng phương pháp xét dư theo modulo (dư của phép chia).

### Bước 1: Xét modulo 4

Ta sẽ xét \( x^2, y^2, z^2 \) theo modulo 4:
- Nếu \( x \) và \( y \) là số chẵn, thì \( x^2 \equiv 0 \) (mod 4) và \( y^2 \equiv 0 \) (mod 4).
- Nếu \( x \) và \( y \) là số lẻ, thì \( x^2 \equiv 1 \) (mod 4) và \( y^2 \equiv 1 \) (mod 4).
- Nếu một trong hai số là chẵn, còn một là lẻ, thì \( x^2 + y^2 \equiv 0 + 1 \equiv 1 \) (mod 4) hoặc \( 1 + 0 \equiv 1 \) (mod 4).

Phân tích từng trường hợp:
1. **Tất cả số chẵn**: \( x^2 + y^2 + z^2 \equiv 0 \) (mod 4) → không thể bằng 1980 (vì \( 1980 \equiv 0 \) (mod 4)).
2. **Tất cả số lẻ**: \( x^2 + y^2 + z^2 \equiv 3 \) (mod 4) → không thể bằng 1980 (vì \( 1980 \equiv 0 \) (mod 4)).
3. **Hai số chẵn, một số lẻ**: \( 0 + 0 + 1 \equiv 1 \) (mod 4) → không thể bằng 1980.
4. **Một số chẵn, hai số lẻ**: \( 0 + 1 + 1 \equiv 2 \) (mod 4) → không thể bằng 1980.

Vì mọi trường hợp đều không đạt, có thể thấy rằng phương trình \( x^2 + y^2 + z^2 = 1980 \) không có nghiệm nguyên thỏa mãn.

### Bước 2: Kết luận
Phương trình \( x^2 + y^2 + z^2 = 1980 \) không có nghiệm nguyên nào.

Bạn hỏi - Lazi trả lời

Bạn muốn biết điều gì?

GỬI CÂU HỎI
Học tập không giới hạn cùng học sinh cả nước và AI, sôi động, tích cực, trải nghiệm
Bài tập liên quan
Bài tập Toán học Lớp 9 mới nhất

Hôm nay bạn thế nào? Hãy nhấp vào một lựa chọn, nếu may mắn bạn sẽ được tặng 50.000 xu từ Lazi

Vui Buồn Bình thường

Học ngoại ngữ với Flashcard

×
Trợ lý ảo Trợ lý ảo
×
Gia sư Lazi Gia sư