Tìm x, |x-2| + |x-5| = 3, |3x-5| + |3x+1| = 6 Tham khảo câu trả lời từ Trợ lý ảo Lazi To solve the equations, we can approach them by considering the cases determined by the critical points where the expressions inside the absolute values change sign. ### Equation (b): \( |x-2| + |x-5| = 3 \) **Critical Points:** - \( x = 2 \) - \( x = 5 \) **Case 1:** \( x < 2 \) - Here, \( |x-2| = 2 - x \) and \( |x-5| = 5 - x \). - Equation becomes: \[ (2 - x) + (5 - x) = 3 \implies 7 - 2x = 3 \implies 2x = 4 \implies x = 2 \] - This value does not satisfy \( x < 2 \). **Case 2:** \( 2 \leq x < 5 \) - Here, \( |x-2| = x - 2 \) and \( |x-5| = 5 - x \). - Equation becomes: \[ (x - 2) + (5 - x) = 3 \implies 3 = 3 \] - This is true for all \( x \) in the interval \( [2, 5) \). **Case 3:** \( x \geq 5 \) - Here, \( |x-2| = x - 2 \) and \( |x-5| = x - 5 \). - Equation becomes: \[ (x - 2) + (x - 5) = 3 \implies 2x - 7 = 3 \implies 2x = 10 \implies x = 5 \] - This value satisfies \( x \geq 5 \). **Solution for (b):** \( x \in [2, 5] \) (including endpoints). --- ### Equation (c): \( |3x-5| + |3x+1| = 6 \) **Critical Points:** - \( 3x - 5 = 0 \) implies \( x = \frac{5}{3} \) - \( 3x + 1 = 0 \) implies \( x = -\frac{1}{3} \) **Case 1:** \( x < -\frac{1}{3} \) - Here, \( |3x-5| = 5 - 3x \) and \( |3x+1| = -3x - 1 \). - Equation becomes: \[ (5 - 3x) + (-3x - 1) = 6 \implies 4 - 6x = 6 \implies -6x = 2 \implies x = -\frac{1}{3} \] - This does not satisfy \( x < -\frac{1}{3} \). **Case 2:** \( -\frac{1}{3} \leq x < \frac{5}{3} \) - Here, \( |3x-5| = 5 - 3x \) and \( |3x+1| = 3x + 1 \). - Equation becomes: \[ (5 - 3x) + (3x + 1) = 6 \implies 6 = 6 \] - This is true for all \( x \) in the interval \( \left[-\frac{1}{3}, \frac{5}{3}\right) \). **Case 3:** \( x \geq \frac{5}{3} \) - Here, \( |3x-5| = 3x - 5 \) and \( |3x+1| = 3x + 1 \). - Equation becomes: \[ (3x - 5) + (3x + 1) = 6 \implies 6x - 4 = 6 \implies 6x = 10 \implies x = \frac{5}{3} \] - This satisfies \( x \geq \frac{5}{3} \). **Solution for (c):** \( x \in \left[-\frac{1}{3}, \frac{5}{3}\right] \) (including endpoints). ### Final Solutions: - (b) \( x \in [2, 5] \) - (c) \( x \in \left[-\frac{1}{3}, \frac{5}{3}\right] \)