Cho A= 1234 …..20132014 ( số được viết bởi các số tự nhiên liên tiếp từ 1đến 2014. Tìm số dư của phép chia A cho 3?
Bằng cách nhấp vào Đăng nhập, bạn đồng ý Chính sách bảo mật và Điều khoản sử dụng của chúng tôi. Nếu đây không phải máy tính của bạn, để đảm bảo an toàn, hãy sử dụng Cửa sổ riêng tư (Tab ẩn danh) để đăng nhập (New Private Window / New Incognito Window).
- Ta chia các số tự nhiên từ 1 đến 2014 thành 3 nhóm: từ 000 đến 999, từ 1000 đến 1999, từ 2000 đến 2014- Ta thấy: từ 000 đến 999 có: 999 + 1 = 1000 (số) và có 3 x 1000 = 3000 (chữ số) được chia đều cho 10 chữ số từ 0 đến 9.Số lần xuất hiện của mỗi chữ số là:3000 : 10 = 300 (lần)Tổng các chữ số từ 000 đến 999 là: (0+1+2+3+4+5+6+7+8+9) x 300 = 13500- Tương tự như vậy cho các số từ 1000 đến 1999 lại có thêm 1000 chữ số 1.Tổng của nhóm 2 là: 1000 + 13500 = 14500- Tổng các chữ số từ 2000 đến 2014 : 2 + 3 + 4 +5 +6 +7 +8 +9 + 10 +11 +3 +4 +5 +6 +7 =90- Tổng các chữ số của A : 13500 + 14500 + 90 = 28090- Vì 28090 chia 3 dư 1 nên A chia 3 dư 1
Hôm nay bạn thế nào? Hãy nhấp vào một lựa chọn, nếu may mắn bạn sẽ được tặng 50.000 xu từ Lazi
Vui | Buồn | Bình thường |