Chứng tỏ rằng tổng tất cả các số có 2 chữ số được lập từ ba chữ số a; b; c khác nhau và khác 0 không thể nhỏ hơn 132.
Bằng cách nhấp vào Đăng nhập, bạn đồng ý Chính sách bảo mật và Điều khoản sử dụng của chúng tôi. Nếu đây không phải máy tính của bạn, để đảm bảo an toàn, hãy sử dụng Cửa sổ riêng tư (Tab ẩn danh) để đăng nhập (New Private Window / New Incognito Window).
Gọi A là tổng các số có 2 chữ số khác nhau khác không được lập từ 3 chữ số a,b,c ta có:A= ab+ac+ba+bc+ca+cb= a x10 + b + a x10 + c + b x10 + a + b x 10 + c + c x 10 + a + c x 10 + b= 20 x (a+b+c) + 2 (a+b+c)Do a,b,c khác nhau và khác 0 nên tổng a+b+c nhỏ nhất là: 1+2+3=6Vậy giá trị nhỏ nhất của A là: 20 x 6 + 2 x 6 =132 -> A không thể nhỏ hơn 132
Hôm nay bạn thế nào? Hãy nhấp vào một lựa chọn, nếu may mắn bạn sẽ được tặng 50.000 xu từ Lazi
Vui | Buồn | Bình thường |