Trong mặt phẳng tọa độ Oxy cho parabol (P) có phương trình y=12x2 và hai điểm A, B thuộc (P) có hoành độ lần lượt là xA=−1;xB=2.
a) Tìm tọa độ của hai điểm A, B.
b) Viết phương trình đường thẳng (d) đi qua hai điểm A, B.
c) Tính khoảng cách từ O (gốc tọa độ) đến đường thẳng (d).
Bằng cách nhấp vào Đăng nhập, bạn đồng ý Chính sách bảo mật và Điều khoản sử dụng của chúng tôi. Nếu đây không phải máy tính của bạn, để đảm bảo an toàn, hãy sử dụng Cửa sổ riêng tư (Tab ẩn danh) để đăng nhập (New Private Window / New Incognito Window).
a) Vì A, B thuộc (P) nên:
xA=−1⇒yA=12⋅-12=12xB=2⇒yB=12⋅22=2⇒A−1;12 , B(2;2)
b) Gọi phương trình đường thẳng (d) là y = ax + b.
Ta có hệ phương trình:
−a+b=122a+b=2⇔3a=322a+b=2⇔a=12b=1
Vậy (d): y=12x+1.
c) (d) cắt trục Oy tại điểm C(0; 1) và cắt trục Ox tại điểm D(– 2; 0)
=> OC = 1 và OD = 2
Gọi h là khoảng cách từ O tới (d).
Áp dụng hệ thức về cạnh và đường cao vào ∆ vuông OCD, ta có:
1h2=1OC2+1OD2=112+122=54⇒h=255
Vậy khoảng cách từ gốc O tới (d) là 255.
Hôm nay bạn thế nào? Hãy nhấp vào một lựa chọn, nếu may mắn bạn sẽ được tặng 50.000 xu từ Lazi
Vui | Buồn | Bình thường |