Bài tập  /  Bài đang cần trả lời

Cho phương trình mx4−2m−1x2+m−1=0   (1). Tìm m để phương trìnha) Có nghiệm duy nhấtb) Có hai nghiệm phân biệtc) Có ba nghiệm phân biệtd) Có bốn nghiệm phân biệt

Cho phương trình mx4−2m−1x2+m−1=0   (1). Tìm m để phương trình

a) Có nghiệm duy nhất

b) Có hai nghiệm phân biệt

c) Có ba nghiệm phân biệt

d) Có bốn nghiệm phân biệt

1 Xem trả lời
Hỏi chi tiết
6
0
0
Trần Đan Phương
10/09 08:21:45

a) Đặt t=x2 với điều kiện t≥0. Khi đó phương trình được biến đổi về dạng:

ft=mt2−2m−1t+m−1=02

Ta xét hai trường hợp:

TH1: với m = 0, ta được:

Vậy với m = 0, phương trình có hai nghiệm phân biệt.

TH2: với m≠0 thì:

a) Phương trình (1) có nghiệm duy nhất

⇔2 có nghiệm t1≤0=t2

⇔S≤0P=0⇔2m−1m≤0m−1m=0

⇔m=1

Vậy với m = 1 phương trình có nghiệm duy nhất.

b) Phương trình (1) có hai nghiệm phân biệt có nghiệm

Vậy với 0≤m<1 phương trình có hai nghiệm phân biệt.

c) Phương trình (1) có ba nghiệm phân biệt

Hệ trên vô nghiệm, vậy không tồn tại m để phương trình có 3 nghiệm phân biệt.

d) Phương trình (1) có bốn nghiệm phân biệt

Vậy m < 0 để phương trình có 4 nghiệm phân biệt.

Mở khóa để xem toàn bộ nội dung trả lời

(?)
Bạn đã đạt đến giới hạn của mình. Bằng cách Đăng ký tài khoản, bạn có thể xem toàn bộ nội dung trả lời
Cải thiện điểm số của bạn bằng cách đăng ký tài khoản Lazi.
Xem toàn bộ các câu trả lời, chat trực tiếp 1:1 với đội ngũ Gia sư Lazi bằng cách Đăng nhập tài khoản ngay bây giờ
Tôi đã có tài khoản? Đăng nhập

Bạn hỏi - Lazi trả lời

Bạn muốn biết điều gì?

GỬI CÂU HỎI
Học tập không giới hạn cùng học sinh cả nước và AI, sôi động, tích cực, trải nghiệm

Hôm nay bạn thế nào? Hãy nhấp vào một lựa chọn, nếu may mắn bạn sẽ được tặng 50.000 xu từ Lazi

Vui Buồn Bình thường
×
Trợ lý ảo Trợ lý ảo
×
Đấu trường tri thức | Lazi Quiz Challenge +500k
Gửi câu hỏi
×